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Nearest-neighbor distribution for singular billiards

E. Bogomolny, O. Giraud, and C. Schmit
Laboratoire de Physique The´orique et Mode`les Statistiques, Universite´ de Paris XI, Baˆtiment 100, 91405 Orsay Cedex, France

~Received 19 December 2001; published 17 May 2002!

The exact computation of the nearest-neighbor spacing distributionP(s) is performed for a rectangular
billiard with a pointlike scatterer inside for periodic and Dirichlet boundary conditions, and it is demonstrated
that whens→` this function decreases exponentially. Together with the results of Bogomolny, Gerland, and
Schmit @Phys. Rev. E63, 036206~2001!#, it proves that spectral statistics of such systems is of intermediate
type characterized by level repulsion at small distances and exponential fall-off of the nearest-neighbor distri-
bution at large distances. The calculation of thenth nearest-neighbor spacing distributionPn(s) and its
asymptotics is performed as well for any boundary conditions.
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I. INTRODUCTION

The statistical analysis of quantum energy levels fo
given system in the semiclassical limit is a well-studied fe
ture in the theory of spectral statistics@1–3#. The main con-
jectures in this field are as follows.

~i! The Berry-Tabor conjecture@4#: generic integrable sys
tems obey Poisson statistics, which implies that their ene
levels behave as independent random variables.

~ii ! The Bohigas-Giannoni-Schmit conjecture@5#: generic
chaotic systems follow the Wigner-Dyson distributions
random matrix theory~see@2#!.

There is an enormous amount of numerical evidence
many physical systems do agree with these two main le
statistics. Partial analytical results support these conject
for integrable rectangular billiards@6# and quantum chaotic
systems@7–10#.

However, there exist systems which are neither integra
nor chaotic and their spectral statistics do not follow any
the above leading models. In many cases their statistics h
features intermediate between the Poisson statistics and
of random matrix ensembles and for this reason they
called ‘‘intermediate statistics’’@11–13#. For the first time
this type of behavior was clearly observed numerically
the three-dimensional Anderson model at the metal-isol
transition point@11#, and later it was argued@14# that spectral
statistics of diffractive and pseudointegrable systems is
of intermediate type.

To study precisely the statistical behavior of the ene
levels of quantum systems, one usually introduces differ
functions that characterize the statistics@2#. The most impor-
tant quantity for our purpose is the distribution of neare
neighbor spacings,P(s), which is the probability that two
levels are separated by a distances with no levels inside this
interval.

For the Poisson statistics, the nearest-neighbor distr
tion takes the following particularly simple form:

P~s!5exp~2s! ~1!

and it is characterized by~i! the absence of level repulsio
@P(0)Þ0# and ~ii ! exponential decay for a large distance
1063-651X/2002/65~5!/056214~16!/$20.00 65 0562
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For standard random matrix ensembles, the near
neighbor spacing distributions are given by complicated
pressions@2# but their main features can be seen from t
Wigner surmise,

P~s!5absb exp~2cbs2!, ~2!

whereb51, 2, and 4 corresponds, respectively, to orthog
nal, unitary, or symplectic ensembles, andab and cb are
constants determined by the normalization conditions.
main properties are~i! level repulsion,P(0)50, and~ii ! a
very quick decrease at large values ofs, P(s)}exp(2cs2)
whens→`.

We call spectral statistics of intermediate type if they ha
the following hybrid properties~cf. @11,14#!: ~i! they exhibit
the level repulsion,P(0)50, as for standard random matri
ensembles, and~ii ! they have exponential decay at larges,
P(s)}exp(2cs) whens→`, similarly to the Poisson statis
tics. Little is known analytically for systems with intermed
ate statistics, though it is possible to write down mod
which will have this type of statistics@15,12#.

The rectangular billiard with a pointlike scatterer insid
belongs to the class of diffractive systems and is one of
models which is supposed to have intermediate statis
@14,13#. Without the scatterer this model is an integrable s
tem, and when the ratioa2/b2 of the sides of the rectangle i
a ‘‘good’’ irrational number its quantum energy levels$en%
obey the Poisson statistics@4,6#. The addition of ad-function
scatterer

V5ld~xW2xW0! ~3!

inside the rectangle corresponds to a rank-1 perturbation,
the new quantum energy levelsE of the perturbed rectangu
lar billiard will obey the following quantization condition
@16,17#:

l(
n

ucn
(0)~xW0!u2

E2en
51, ~4!

wherecn
(0) anden are the eigenfunctions and eigenvalues

the unperturbed rectangular billiard. Similar equations
pear in different models. In particular, the quantization co
©2002 The American Physical Society14-1
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dition for the star graphs can be transformed to this fo
@18#. All our results are applicable without changes in su
cases as well.

Rank-1 perturbations have been studied in the contex
ballistic motion of particles in regular@17# or chaotic cavities
@19#, and in the context of random matrix theory@20#. When
a d-function potential~3! is added to a chaotic system wit
random matrix statistics, it has been proved@21# that the new
eigenvalues in Eq.~4! are also distributed according to th
same statistics. In the chaotic case, the universal part o
spectral statistics is not changed by finite-rank perturbat
On the contrary, when the unperturbed system is integra
the perturbation~3! changes dramatically its spectral stat
tics @17,13#.

In Ref. @13#, the two-point correlation function of a rec
angular billiard with a small-size scatterer inside@described
by the potential~3!# has been computed analytically. One
the conclusions of this paper was that spectral statistic
such singular billiards do have level repulsion. For billiar
with periodic boundary conditions, the two-point correlati
function and, consequently, the nearest-neighbor distribu
vanish linearly at small distances with the slope independ
of the coupling constant,

P~s! ;
s→0

pA3
2

s. ~5!

For billiards with Dirichlet boundary conditions, the smalls
behavior of the two-point correlation function and th
nearest-neighbor distribution is different: one has~see@13#!

P~s! ;
s→0

1
8p3

s ln4 s. ~6!

The main purpose of this paper is to compute analytically
nearest-neighbor spacing distributions for this model a
demonstrate that for any boundary conditions they decre
exponentially at large separation. Together with the result
Ref. @13# regarding the existence of level repulsion, it w
furnish the proof that spectral statistics of these systems
of intermediate type.

The plan of the paper is as follows. In Sec. II, we gen
alize the formalism used in@13# to describe the neares
neighbor spacing distribution for a billiard with a pointlik
scatterer for periodic and Dirichlet boundary condition
Though the resulting formulas are explicit and exact, th
are quite cumbersome, and in Sec. III we study
asymptotic behavior ofP(s) for large s. It is demonstrated
that in all cases the nearest-neighbor distribution has an
ponential tail at large distances thus proving the intermed
character of the spectral statistics of singular billiards.
Sec. IV, thenth nearest-neighbor spacing distributions f
these billiards with periodic and Dirichlet boundary cond
tions are computed analytically and their large distan
asymptotics are found as well. In the Appendix, we pres
certain technical details of the computation of necessary
tegrals.
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II. THE GENERAL FORMALISM

A. Preliminary computations

In this section, our aim is to find analytical expressio
for the nearest-neighbor spacing distribution of the solutio
E, of the following equation:

l(
j 51

N
r j

E2ej
51, ~7!

where ej , j 51, . . . ,N are independent random variable
with a uniform distributiondm(e):

dm~e!5H 1

2W
de if 2W<e<W

0 otherwise,

~8!

and r j are positive constants with mean value 1,

1

N (
n51

N

r n51. ~9!

This normalization condition permits us to introduce conv
niently the coupling constantl.

In general, this equation describes zeros of a merom
phic function whose poles are assumed to be indepen
random variables, and it can correspond to different phys
problems~see, e.g.,@22#!. In this paper, we prefer to conside
it as the quantization condition of rectangular~or more gen-
eral integrable! billiards with a small-size impurity inside
@16,17#. To ensure that energy levels of unperturbed billiar
behave as independent random variables, it is necessa
assume that the ratio of squares of the sides of the rectan
a and b, is an irrational number badly approximated by
rational ~that is, a diophantine number! @6# with the follow-
ing property:

U a2

b2
2

m

n U.
C

nk
~10!

for all integersm, n, and somek>2.
The residues,r n , depend on boundary conditions. F

quantum problems with periodic boundary conditions,r n
51. For Dirichlet conditions,

r mn54 sin2S p

a
mx0D sin2S p

b
ny0D , ~11!

wherex0 ,y0 are coordinates of the singular scatterer. Wh
the ratiosx0 /a and y0 /b are noncommensurable irration
numbers andm,n→`,r mn can be considered as independe
random variables,

r mn54 sin2 f1 sin2 f2 ~12!

with anglesf i uniformly distributed between 0 andp/2.
4-2
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When both ratiosx0 /a andy0 /b are rational numbers,

x0

a
5

p1

q1
,

y0

b
5

p2

q2
~13!

with coprime integers (pi ,qi), the residues~11! only depend
on m modq1 andn modq2 and there is only a finite numbe
of residues determined byqi anglesf i in Eq. ~12! ~see@13#
for more detail!,

f15p
k1

q1
with k150,1, . . . ,q121,

f25p
k2

q2
with k250,1, . . . ,q221. ~14!

All our formulas below remain valid for generalr n .
Obviously there areN solutionsEj of Eq. (7) since each

interval ]ei ,ei 11@ contains one and only one of these so
tions. We are interested in the nearest-neighbor distribut
P(s), that is the probability that two energy levelsEi andEj
are neighbors separated by a distances. In our case, it is the
probability that two solutionsEi andEj of Eq. ~7! are sepa-
rated by one and only one unperturbed levelek , and that
uEi2Ej u5s. Let us compute at first the probabilit
P(E1 ,E2) that two given energy levelsE1 andE2 are neigh-
bors. Assuming for instance thatE2,E1 , P(E1 ,E2) is the
probability that that one solution of Eq.~7! equalsE1, an-
other one equalsE2, and that there existsi ,1< i<N, such
that

eiP]E2 ,E1@ , ; j Þ i , ej¹#E2 ,E1@ . ~15!

As it is supposed thatek are independent random variabl
with a uniform distribution,

P~E1 ,E2!5E
2W

W

)
k51

N
dek

2W
r~E1!r~E2!

3(
i 51

N

x~ei !)
j Þ i

@12x~ej !#, ~16!

where x(e) is the characteristic function of the interv
]E2 ,E1@ equal to 1 ife belongs to ]E2 ,E1@ , and to 0 other-
wise, andr is the density of the solutionsEi ,

r~E!5(
i 51

N

d~E2Ei !. ~17!

It is convenient to rewrite these formulas in a more symm
ric way,

P~E1 ,E2!5(
$sk%

E )
k51

N

dmsk
~ek!r~E1!r~E2!, ~18!

where variablessk , k51, . . . ,N take two values, 0,1, and
we introduce two different measures,
05621
-
n,

t-

E dm0~e!f~e!5
1

2WE
2W

W

x~e!f~e!de

5
1

2WE
E2

E1
f~e!de ~19!

and

E dm1~e!f~e!5
1

2WE
2W

W

@12x~e!#f~e!de

5
1

2W S E
2W

W

2E
E2

E1Df~e!de. ~20!

The summation in Eq.~18! is performed over all sequence
sk which contain one zero andN21 ones.

Because$Ei% are solutions of Eq.~7!, the density of states
~17! can be rewritten under the form~cf. @13#!

r~E!5dS (
i 51

N
r j

E2ej
2

1

l D (
k51

N
r k

~E2ek!
2

. ~21!

Representing thed function by a Fourier integral, one gets

r~E!5E
2`

` da

2p
expF iaS (

i 51

N
r j

E2ej
2

1

l D G
3 (

k51

N
r k

~E2ek!
2

~22!

and finally the probability~16! can be put under the form

P~E1 ,E2!5E
2`

` da1da2

4p2 (
$sk%

E )
k51

N

dmsk
~ek!e

2 i (a11a2)/l

3 (
k1 ,k251

N r k1
r k2

~E12ek1
!2~E22ek2

!2

3 )
j 1 , j 251

N

expS ia1

r j 1

E12ej 1

1 ia2

r j 2

E22ej 2

D .

~23!

Let us introduce the following functions:

f s~a1 ,a2!5E dms~e!expS i
a1

E12e
1 i

a2

E22eD ,

C j s~a1 ,a2!5E dms~e!
1

~Ej2e!2

3expS i
a1

E12e
1 i

a2

E22eD ,

gs~a1 ,a2!5E dms~e!
1

~E12e!2~E22e!2

3expS i
a1

E12e
1 i

a2

E22eD . ~24!
4-3
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The nearest-neighbor distribution can be expressed through these functions in the following way:

P~E1 ,E2!5(
$sk%

E
2`

` da1da2

4p2 S (
j

r j
2gs j

~ar j !)
kÞ j

f sk
~ar k!1(

j Þk
r j r kC1s j

~ar j !C2sk
~ar k! )

lÞ j ,k
f s l

~ar l ! De2 i (a11a2)/l.

~25!
se

d
st-
r

Here and below when it will not lead to a confusion we u
the notationf (a) for a function of two variablesf (a1 ,a2)
and f (ar ) instead off (a1r ,a2r ). This formula is valid for
all sequences ofsk . The functions~24! with index s50
correspond to an unperturbed level betweenE2 andE1, and
the functions with indexs51 correspond to an unperturbe
level outside ]E2 ,E1@ . Therefore, to describe the neare
neighbor distribution, the summation should be done oveN
possible sequences containing only one zero.

The functionsC j s and gs are related tof s by the rela-
tions

C j s~a1 ,a2!52
]2

]a j
2

f s~a1 ,a2!,gs~a1 ,a2!

5
]4

]a1
2]a2

2
f s~a1 ,a2!. ~26!

Therefore, in order to computeP(E1 ,E2) it is necessary to
find only f s . Let us introduce the functions

I s~a1 ,a2!52WE dms~e!F12expS i
a1

E12e

1 i
a2

E22eD G , ~27!

which are related to our basic functionsf s as follows:

f 1~a1 ,a2!512
v

2W
2

1

2W
I 1~a1 ,a2!,

f 0~a1 ,a2!5
v

2W
2

1

2W
I 0~a1 ,a2!, ~28!

where v5E12E2 is the difference of energies~we recall
that we have assumedE2,E1).

The integral definingI 1(a) can be split into two parts,

I 1~a1 ,a2!5S E
2W

E2
1E

E1

WD
3F12expS i

a1

E12e
1 i

a2

E22eD Gde

5J1~a1 ,a2!1 j ~a1 ,a2!, ~29!

where
05621
J1~a1 ,a2!5S E
2`

E2
1E

E1

` D
3F12expS i

a1

E12e
1 i

a2

E22eD Gde ~30!

and

j ~a1 ,a2!52S E
2`

2W

1E
W

` D
3F12expS i

a1

E12e
1 i

a2

E22eD Gde. ~31!

For convenience, we define the functionJ0(a)5I 0(a) so
that from Eq.~27!

J0~a1 ,a2!5E
E2

E1F12expS i
a1

E12e
1 i

a2

E22eD Gde.

~32!

The integral~31! defining j (a) has no singularity inside the
integration region, and as was demonstrated in@13#, it is
sufficient to take into account only terms linear ina and to
ignore the difference betweenE1 and E2 ~i.e., setE1'E2
'E). In this approximation,

j ~a1 ,a2!5 i ~a11a2!ln
W2E

W1E
. ~33!

FIG. 1. The cuts in complex planes ofa1 anda2 for functions

J̃1 andf1 ~a!,~b!; J̃0 andf0 ~c!,~d!.
4-4
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On the contrary, the functionsJs(a) are quite cumbersome
One can easily check that they depend only on the differe
of energies,v5E12E2, and that

Js~a!5v J̃sS a

v D , ~34!

where the functionsJ̃s(a) are defined by Eqs.~30! and~32!
with E151 andE250.

In the Appendix, it is demonstrated that these functio
obey the differential equation

~]12]2!J̃s~a1 ,a2!5ei (a12a2)fs~a1 ,a2!, ~35!

where] i denotes the derivative with respect toa i , and the
functionsfs(a) at reala are given by Eqs.~A7! and~A10!.
From this equation it follows~see the Appendix for details!

that the functionJ̃1(a) is an analytical function of two com
plex variablesa1 ,a2 with the cuts as in Figs. 1~a! and 1~b!
given by the following expression:

J̃1~a1 ,a2!5«
21

` dt

t2
~12ei (a11a2)t!

1E
0

a1
ei (2t2a12a2)f1~ t,a11a22t !dt,

~36!

where« denotes the principal part of the integral.
The functionJ̃0(a) is an analytical function in a region

indicated in Figs. 1~c! and 1~d! with the integral representa
tion
05621
ce

s

J̃0~a1 ,a2!5E
1

`dt

t2
~12e2 i (a11a2)t!

1E
0

a1
ei (2t2a12a2)f0~ t,a11a22t !dt. ~37!

Exactly as was done in@13#, one can prove that function
C is ,gs defined in Eqs.~24! can be expressed through th
functionsfs as follows:

gs~a1 ,a2!5
1

2Wv2
~]12]2!Fei [(a12a2)/v]fsS a1

v
,
a2

v D G ,
C1s~a1 ,a2!5

1

2W
ei [(a12a2)/v]]1fsS a1

v
,
a2

v D ,

C2s~a1 ,a2!52
1

2W
ei [(a12a2)/v]]2fsS a1

v
,
a2

v D .

~38!

B. Nearest-neighbor spacing distribution

Using Eqs.~38!, one can integrate the first term in E
~25! by parts and because@see Eqs.~28! and ~34!#

~]12]2! f s~a1 ,a2!52
1

2W
ei (a12a2)/vfsS a1

v
,
a2

v D
~39!

one obtains
E
2`

` da1da2

4p2 (
j

r j
2gs j

~ar j !S )
kÞ j

f sk
~ar k! De2 i (a11a2)/l

5
1

v2~2W!2E2`

` da1da2

4p2 (
j Þk

r j r kfs j S a

v
r j DfskS a

v
r kDei [(a12a2)/v]( r k1r j )

3S )
lÞ j ,k

f s l
~ar l ! De2 i (a11a2)/l. ~40!
According to Eqs.~38!, the second term in Eq.~25! can also
be expressed through the same functionsfs(a), and after
the scaling of variablesa→av @cf. Eq. ~34!# the nearest-
neighbor distribution~25! takes the form

P~v!5(
$sk%

E
2`

` da1da2

~4Wp!2 (
j Þk

r j r k$fs j
~ar j !fsk

~ar k!

2]1fs j
~ar j !]2fsk

~ar k!%e
i (a12a2)(r j 1r k)

3S )
lÞ j ,k

f̃ s l
~ar l ! De2 iv(a11a2)/l, ~41!
wheref̃ s l
(a)5 f s l

(av). Using Eqs.~28!, ~29!, and~31!, one
gets

f̃ 1~a1 ,a2!512
v

2W S 11 J̃1~a1 ,a2!

1 i ~a11a2!ln
W2E

W1ED ,

f̃ 0~a1 ,a2!5
v

2W
@12 J̃0~a1 ,a2!#. ~42!
4-5
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Expression~41! is valid for any sequence$sk%P$0,1%N. To
get the nearest-neighbor distribution, one has to sum ovN
sequences containing only one zero. Taking into account
in the limit N→` the restriction j Þk is unessential, we
obtain, keeping only the dominant term,

P~v!5
N2

4W2E2`

` da1da2

~2p!2
@N^ f̃ 0~ar !&Vf1 ,f1

~a!

1Vf0 ,f1
~a!1Vf1 ,f0

~a!#

3S)
l

f̃ 1~ar l ! De2 iv(a11a2)/l, ~43!

where the operatorVf ,g(a) is defined for arbitrary functions
f (a) andg(a) by the following expression:

Vf ,g~a!5^r f ~ar !ei (a12a2)r&^rg~ar !ei (a12a2)r&

2 K S ]

]a1
f ~ar ! Dei (a12a2)r L

3 K S ]

]a2
g~ar ! Dei (a12a2)r L , ~44!

and ^ f (r )& means the mean value over all values ofr,

^ f ~r !&5
1

N (
n51

N

f ~r n!. ~45!

Measuring the energy differencev in the units of mean leve
spacing

s5
Nv

2W
, ~46!

the product) l f̃ 1(ar l) can also be simplified in the limit o
largeN @see Eq.~42!#,

)
l 51

N

f̃ 1~ar l !'expF2
Nv

2W S 11 J̃1~a1 ,a2!

1 i ~a11a2!ln
W2E

W1ED G . ~47!

Introducing the renormalized coupling constantl8,

1

l8
5

2W

Nl
1 ln

W2E

W1E
, ~48!

we obtain the final formula for the nearest-neighbor distrib
tion P(s)5(2W/N)2P(v),

P~s!5e2sE
2`

` da1da2

~2p!2
$s@12^J̃0~ar !&#Vf1 ,f1

~a!

1Vf0 ,f1
~a!1Vf1 ,f0

~a!%e2s[ ^ J̃1(ar )&1 i (a11a2)/l8] .

~49!
05621
at

-

C. Analytical continuation

Usually, if one wants to compute an integral

E
2`

`

da1da2f ~a1 ,a2!e2sJ(a1 ,a2), ~50!

where J(a) and f (a) are analytical functions in a certai
region, the first step is to move the integration contour as
as possible to decrease the integrand. In general, during
deformation one can either meet a saddle point or a sin
larity which signifies that further deformation of the conto
either will increase the integrand or is not possible. If
such obstacle appears, the integral is zero.

In the case of the nearest-neighbor distribution~49!, the
saddle-point equation reads~taking herer 51)

]

]a1
J̃1~a1 ,a2!1

i

l8
50,

]

]a2
J̃1~a1 ,a2!1

i

l8
50.

~51!

In particular, these equations imply that at any saddle po

S ]

]a1
2

]

]a2
D J̃1~a1 ,a2!50. ~52!

From Eqs.~A4! and ~A6! it follows that this difference is
proportional toK0(x) with x52Aa1a2. But K0(x) has no
zero on the complex plane~see@23#, p. 62!. Therefore, our
integral ~49! has no saddle points and one can move
contour of integration freely. If the prefactor in~50! has no
singularities in the region whereJ̃1 is analytical, the contri-
bution vanishes. Note that it is exactly what should be
pected for physical reasons: replacing the prefactor in
~49! by 1, we have to obtain the probability that there a
two perturbed levels inE2 andE1 but no unperturbed energ
levels between, which according to Eq.~7! is impossible.
These considerations prove that the integral~49! with a pref-
actor equal to 1 or, more generally, with any prefactor a
lytical in the same domain asJ̃1(a) ~and not too quickly
increasing on infinity! must vanish.

These arguments allow us to simplify considerably t
expression~49! for the nearest-neighbor distribution. Th
prefactor in Eq.~49! is

f ~a!5s@12^J̃0~ar !&#Vf1 ,f1
~a!

1Vf0 ,f1
~a!1Vf1 ,f0

~a!. ~53!

First, as only the functions with index 0 have analytical pro
erties different from that ofJ̃1(a) ~see Fig. 1!, one can drop
the first term and keep only

f ~a!52s^J̃0~ar !&Vf1 ,f1
~a!

1Vf0 ,f1
~a!1Vf1 ,f0

~a!. ~54!

Secondly, according to Eqs.~A11! and ~A21!,

f0~a!52f1~a!1p@sgn~a1!2sgn~a2!#J0~2A2a1a2!

~55!

and
4-6
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J̃0~a!52 J̃1~a!1sgn~a1!R~a!1sgn~a2!R†~a!,
~56!

where the functionR(a) is defined in Eq. ~A22! and
R†(a)5R* (a2 ,a1).
e

y

th
if

s
r-

05621
When these expressions are substituted in Eq.~54!, the
terms with index 1 can be dropped out because they have
same analytical properties asJ̃1(a) and, as has been dis
cussed above, their integrals vanish. Finally, the prefac
takes the form
can
f ~a!52s@sgn~a1!^R~ar !&1sgn~a2!^R†~ar !&#Vf1 ,f1
~a!1p@sgn~a1!2sgn~a2!#@VJ0 ,f1

~a!1Vf1 ,J0
~a!#

12p i
d~a1!

a21 i e
~^e2 ia2r&!222p i

d~a2!

a12 i e
~^eia1r&!2, ~57!

whereJ0 is the Bessel functionJ0(2A2a1a2). The last term in this equation appears from the differentiation of@sgn(a1)
2sgn(a2)# in Eq. ~44!. The resultingd function allows us to take the remaining terms at smalla. We also writea1,27 i e,
wheree→01, to recall the region where the functions are defined.

When this expression is substituted in Eq.~49! one gets the final formula for the nearest-neighbor distribution, which
be conveniently written as a sum of three terms,

P~s!5
e2s

4p2
@A~s!1B~s!1C~s!#, ~58!

where

A~s!52sE
0

`

da1E
2`

`

da2^R~ar !&Vf1 ,f1
~a!e2s[ ^ J̃1(ra)&1 i (a11a2)/l8]

2sE
0

`

da2E
2`

`

da1^R
†~ar !&Vf1 ,f1

~a!e2s[ ^ J̃1(ra)&1 i (a11a2)/l8]1c.c., ~59!

B~s!5pE
0

`

da1E
2`

`

da2@Vf1 ,J0
~a!1VJ0 ,f1

~a!#e2s[ ^ J̃1(ra)&1 i (a11a2)/l8]2pE
0

`

da2E
2`

`

da1@Vf1 ,J0
~a!

1VJ0 ,f1
~a!#e2s[ ^ J̃1(ra)&1 i (a11a2)/l8]1c.c., ~60!

and

C~s!52p i E
2`

` da2

a21 i e
~^e2 ia2r&!2e2s[ ^ J̃1(0,ra2)&1 ia2 /l8]22p i E

2`

` da1

a12 i e
~^eia1r&!2e2s[ ^ J̃1(ra1,0)&1 ia1 /l8] . ~61!
in-
These expressions look quite complicated, but in the n
section we show that their asymptotics whens→` can eas-
ily be computed.

III. ASYMPTOTIC BEHAVIOR

The formulas~58!–~61! have been written in such a wa
that when the integration is performed from2` to 1`, the
contour of integration as a whole can be shifted into
complex plane. The direction of such a deformation is d
ferent for the integration overa1 and that overa2. It can
conveniently be fixed by the following change of variable
a152 iv or a25 iv. In the new variable the allowed defo
mation of the contour is in both cases Rev.0.

Let us consider first the simple integral~61!. From Eqs.
xt

e
-

:

~A17! and ~A23! of the Appendix it follows thatJ̃1(0,iv)
5 J̃1(2 iv,0)5I (v), where

I ~v !5«
21

` dt

t2
~12e2vt!5ev212vEi~v !, ~62!

and

Ei~v !52«
2v

` dt

t
e2t ~63!

is the standard exponential integral~see, e.g.,@23#, p. 143!.
Consequently, after the above change of variables the

tegral ~61! takes the form
4-7
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C~s!522p i E
2 i`

1 i`dv
v

~^evr&!2e2s[ ^I (vr )&2v/l8]

22p i E
2 i`

1 i`dv
v

~^evr&!2e2s[ ^I (vr )&1v/l8] . ~64!

Now one can move the contour to the right until it go
through the saddle point. For the first integral, the position
the saddle point,v1 , is defined by the equation

d

dv
^I ~v1r !&5

1

l8
~65!

and for the second integral the saddle pointv2 is determined
from a similar equation but with changed sign of the co
pling constantl8,

d

dv
^I ~vr !&52

1

l8
. ~66!

As I 8(v)52Ei(v), the saddle pointsv6 are roots of the
equation

^rEi~v6r !&57
1

l8
~67!

and it is possible to prove that for any reall8 there is one
and only one solution of this equation.

Expanding the exponent in Eq.~64! in the vicinity of the
saddle points and taking into account thatI 9(v)52ev/v and
^I (rv6)&7v6 /l85^erv6&21, one gets that in the limits
→` the function~61! is the sum of contributions from two
saddle points,

C~s!5~2p!3/2(
i 56

~^erv i&!2

A^rerv i&sv i

e2s(^erv i&21). ~68!

The saddle point with the smallest value of^erv&, which we
denote byvsp, dominates and it should formally be the on
one to be taken into account. For finitel8, it corresponds to
the solution of Eq.~67! with a negative right-hand side,

^rEi~rvsp!&52
1

ul8u
. ~69!

Note the appearance of the absolute value of the renor
ized coupling constant. Whenl8→`, both saddle pointsv6

will give comparable contributions and both should be
cluded.

The asymptotics of the other terms~59! and ~60! can be
computed by similar considerations. These functions are
fined as double integrals. The first one is taken from 0 to`
and the second from2` to `. To compute their asymptotic
behavior for larges, the latter integral should be deforme
into the complex plane as was done above and in the for
integral one has to take into account only the lowest-or
terms according to expansion~A26!.
05621
f
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Let us consider the first term in Eq.~59!. We need to
know the limiting behavior of the integrand whena1→0 and
a21a15 iv ~we prefer to use this deformation instead of t
usual one,a25 iv, to simplify the formulas below!. From
Eqs.~A17!, ~A26!, and~A30! it follows that for reala,

J̃1~a1 ,iv2a1! →
a1.0

I ~v !1evS p

2
2 i ~2g1 ln v21

1 ln a1! Da1 , ~70!

with I (v) defined by Eq.~62!. From Eq.~A22! in this limit
R(a).pa1ev. The dominant contribution inVf1 ,f1

(a)
comes from the second term in Eq.~44! and one gets
Vf1 ,f1

(a).2 i ^evr&2/(a1v). Combining all terms togethe

and changing the variablea1→a/(s^rerv&) we find that at
larges

A~s!52p i E
0

`

daE
2 i`

1 i`dv
v

~^erv&!2e2s[ ^I (vr )&2v/l8]

3e2pa/2sin$a@ ln a2 ln s1g~v !#%1~l8→2l8!,

~71!

where

g~v !5 ln v12g2112
^rerv ln r &

^rerv&
2 ln^rerv&. ~72!

The integral overv is an analog of Eq.~64! and can be
computed exactly as above:

A~s!52~2p!3/2(
i 56

~^erv i&!2

A^rerv i&sv i

3 f @ ln s2g~v i !#e
2s(^erv i&21), ~73!

where the functionf (y) is given by the integral

f ~y!5E
0

`

e2pa/2 sin@a~ ln a2y!#da. ~74!

One can check that the contribution~60! when s→` is
smaller by a factor 1/s with respect to Eqs.~68! and~73! and
can be neglected.

Finally, we obtain that the nearest-neighbor distributio
P(s), in the limit of larges has the following asymptotics:

P~s!5
~^ervsp&!2

A2p^rervsp&vsp

3
e2s^ervsp&

As
$12 f @ ln s2g~vsp!#%. ~75!

The saddle-point value,vsp, depends on the renormalize
coupling constant by Eq.~69!,
4-8
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2^rEi~rvsp!&5
1

ul8u
. ~76!

Whenl is very large, the contribution of the second sad
point with a reversed sign of the right-hand side of this eq
tion should be added.

In Fig. 2, the plot of the functionf (y) defined in Eq.~74!
is presented. Wheny→`, this function goes to zero as
21/y. Therefore, the true asymptotics ofP(s) is given by
the first term in Eq.~75!,

P~s!5
~^ervsp&!2

A2p^rervsp&vsp

e2s^ervsp&

As
. ~77!

But because in Eq.~75! the argument of the functionf (y) up
to the constant~72! is lns, this decrease is quite slow, and
numerically accessible values ofs of the order of 10~i.e., y
of the order of 3–4! as is evident from Fig. 2 this function
gives a noticeable contribution.

For the billiard with periodic boundary conditions, th
residues in Eq.~7! all equal 1, and all mean values are r
duced to the corresponding function, i.e., for any functiof
the quantity^ f (rx)& becomesf (x).

In this case, the nearest-neighbor distribution has the
lowing asymptotics:

P~s!5A e3vsp

2pvsp

e2sevsp

As
@12 f „ln s2g~vsp!…#. ~78!

The value ofvsp is determined by the equation

Ei~vsp!52
1

ul8u
~79!

and

g~vsp!5 ln vsp2vsp12g21. ~80!

FIG. 2. Plot of the functionf (y) defined in Eq.~74!.
05621
e
-

l-

In Fig. 3, we present a comparison between numer
computations and the theoretical prediction~78! for two val-
ues ofl. The logarithm of the nearest-neighbor distributio
is plotted as a function ofs. The upper curve~squares! cor-
responds to 106 levels withl851 and the lower one~circles!
to 53105 levels withl85100. For clarity, the curve corre
sponding tol851 has been shifted on the right bys→s
12. The solid lines represent theoretical predictions~78! for
these values of the coupling constant. Forl85100, two
saddle points with a different sign of the right-hand side
Eq. ~79! have been taken into account, which rough
doubles the result~78!. These results confirm very well th
theoretical asymptotics of the nearest-neighbor distribut
~78!.

In the case of a rectangular billiard of sizea3b with
Dirichlet boundary conditions, with a pointlike scatterer su
that the ratios of its positions (x0 ,y0) to the corresponding
sides are noncommensurable irrational numbers, the r
dues,r n , can be considered as random variables of the fo
given by Eq.~12! and the mean value of a given functio
f ,^ f (r )&, should be computed as follows:

^ f ~r !&5
4

p2E0

p/2

df1E
0

p/2

df2 f ~4 sin2 f1 sin2 f2!.

~81!

In the case wherex0 /a andy0 /b are rational numbers~13!,
the mean valuêf (r )& takes the form~see@13#!

^ f ~r !&5
1

q1q2
(

k150

q121

(
k250

q221

f S 4 sin2
pk1

q1
sin2

pk2

q2
D . ~82!

The casesk150 andk250 correspond to unperturbed su
sequence of levels~for Dirichlet boundary conditions! and
one has the freedom to include them in the level density~17!
or consider them separately. In the latter case, the terms

FIG. 3. The nearest-neighbor distribution in the periodic ca
Squares and circles correspond, respectively, tol851 and l8
5100. Solid lines: theoretical predictions~78!. For clarity, the up-
per curves are shifted to the right by two units.
4-9
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ki50 should be omitted and 1/(q1q2) in front of the sum
should be substituted by 1/@(q121)(q221)#. The generali-
zations of̂ f (r )& for the case in which only one ratiox0 /a or
y0 /b is an irrational number and the other one is a ratio
number, or both ratios are irrational but commensura
numbers, are straightforward.

With such a definition of the mean value, the asymptot
of the nearest-neighbor distribution is given by Eq.~75!.

As in the periodic case, the quantity2 ln P(s) is expected
to be nearly linear with the slopêervsp&, wherevsp is the
solution of Eq.~76!.

Figure 4 shows a comparison between the numeric
computed nearest-neighbor distribution for a billiard w

FIG. 4. The nearest-neighbor distribution for a billiard with D
richlet boundary conditions. Squares and circles correspond, res
tively, to l851 and l8510. Solid lines: theoretical asymptotic
~78!. Upper curves are shifted to the right by two units.
v
in
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Dirichlet boundary conditions and the expected asympto
behavior~75! ~solid line! for two values of the renormalized
coupling constant,l851 and l8510 (x0 /a,y0 /b are in-
commensurable irrational numbers!. To better understand th
asymptotics of the nearest-neighbor distribution, we pres
in Fig. 5 the functions which determine the exponential d
crease ofP(s). Different curves in this figure correspond t
the following functions:2Ei(x) ~thick solid line!, expx ~thin
solid line!, 2^rEi(rx)& ~thick dashed line!, and^expx& ~thin
dashed line!.

For periodic boundary conditions, the intersection of t
horizontal line having the ordinate 1/l8 with the graph of
2Ei(x) gives the value ofvsp. The point of intersection of
the vertical line going throughvsp with the graph ofex de-
termines the exponent in Eq.~78!. For Dirichlet boundary
conditions, one should use the same procedure but with
functions2^rEi(rx)& and ^erx&.

IV. THE nTH NEAREST-NEIGHBOR SPACING
DISTRIBUTION

In the previous sections we compute the nearest-neigh
distribution,P(s), for a rectangular billiard with a small-siz
scattering center inside, i.e., the probability that two lev
are separated by a distances with no levels in between. In
this section, we generalize the formalism to compute thenth
nearest-neighbor distribution,Pn(s), which is defined as the
probability that two levels at distances are separated byn
levels, forn>1.

Our starting point is the expression~41! which is valid for
any sequencesk of 0 and 1. To obtain thenth nearest-
neighbor distribution, one should sum over all sequence
lengthN with exactlyn11 zeros. Performing the same ste
as in Sec. II B and taking into account that whenN→` we
haveCN

n →Nn/n!, one obtains

ec-
Pn~s!5e2sE
2`

` da1da2

~2p!2 S sn11

~n11!!
@12^J̃0~ar !&#n11Vf1 ,f1

~a!1
sn

n!
@12^ J̃0~ar !&#n@Vf0 ,f1

~a!1Vf1 ,f0
~a!#

1
sn21

~n21!!
@12^J̃0~ar !&#n21Vf0 ,f0

~a! De2s[ ^ J̃1(ar )&1 i (a11a2)/l8] , ~83!
gue
ove
ists
d’’
he
ec.
le

ble
he

xp
with all functions defined as above.
As a consistency check, one can verify that the sum o

all n coincides with the exact expression of the two-po
correlation function derived in@13#,

R2~s!5 (
n50

`

Pn~s!. ~84!

Similarly to Sec. II C, the different terms in Eq.~83! can
be classified according to their analytical properties. Th
groups of terms appear. The first group has terms which h
er
t

e
ve

the same analytical properties as the functionJ̃1(a) in the
exponent. Exactly as was done in Sec. II C, one can ar
that their contribution is zero because one can freely m
the integration contour to infinity. The second group cons
of terms which are singular on one variable but have ‘‘goo
analytical properties on the other variable of integration. T
larges asymptotics of such terms can be calculated as in S
III by computing the leading terms over the former variab
and shifting the contour of integration over the latter varia
into the complex plane until it reaches the saddle point. T
asymptotics of these terms will be proportional to e
4-10
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@2sevsp# as for the nearest-neighbor distribution. Finally, t
third group @which does not exist forP(s)# includes terms
which are singular@i.e., have analytical properties differen
from that of J̃1(a)# for both variables of integration. In thi
case, no deformation of the integration contour is possi
the region of smalla1 and a2 will be important, and the
asymptotic result will be proportional to exp(2s). As vsp

FIG. 5. Functions2Ei(x) ~thick solid line!, 2^rEi(rx)& ~thick
dashed line!, ex ~thin solid line!, and^erx& ~thin dashed line!.
et

05621
e,

.0, it is the last group of terms which will dominate th
asymptotics ofPn(s) whens→`.

From formula~A26! of the Appendix it follows that, when
both variablesa1 anda2 are small, the functionsVf i ,f j

will
be equivalent to their singular parts,

Vf1 ,f1
~a!.

1

a1a2
, Vf1 ,f0

~a!.2
2p i

a1
d~a2!,

Vf1 ,f0
~a!.

2p i

a2
d~a1!, Vf0 ,f0

~a!.~2p!2d~a1!d~a2!.

~85!

The singular terms in@12^J̃0(ra)&#n are given by the
small-a behavior in Eq.~A25!. Keeping only the terms with
a singularity in$11^J̃1(ra)&2@^J̃0(ra)&1^J̃1(ra)&#%n, we
get

@12^ J̃0~ra!&#n512np~ ua1u1ua2u!

1n~n21!p2ua1uua2u. ~86!

~We recall that the terms coming fromJ̃1 vanish.! The first
term in this expression is the dominant regular contributi
the second one is the dominant contribution singular in o
variable, and the third term is the dominant contribution s
gular in both variables.

Combining all the above expressions together and us
Eq. ~A24!, we obtain
Pn~s!5
sn21

~n21!!
e2sE

2`

` da1da2

~2p!2
@p2s2sgn~a1!sgn~a2!12p2is sgn~a1!d~a2!22p2is sgn~a2!d~a1!

1~2p!2d~a1!d~a2!# exp2sS p

2
~ ua1u1ua2u!2 ia1~ lnua1u1g2!1 ia2~ lnua2u1g1! D , ~87!
r

-
a-

ng
r-
h

where

g65^r ln r &1g216
1

l8
. ~88!

After simple calculations, we obtain the large-s asymptotics
of the nth nearest-neighbor distribution

Pn~s!5
sn21

~n21!!
e2s@12 f ~ ln s2g1!#@12 f ~ ln s2g2!#,

~89!

where the functionf (y) is defined by Eq.~74! ~see also Fig.
2!.

The only difference between periodic and Dirichl
boundary conditions is in the constantg6 ~88! where the
term ^r ln r&52(12ln 2) is added for the latter.
As above, whens→` the function f (ln s2g6) goes to
zero and the true asymptotics of thenth nearest-neighbo
distribution withn>1 for all boundary conditions is

Pn~s!5
sn21

~n21!!
e2s, ~90!

i.e., it coincides with the (n21)th nearest-neighbor distribu
tion for the Poisson distribution. A simple physical explan
tion of this result is the following.

We are interested in the solutions of Eq.~7! when unper-
turbed levels,ej , are independent random variables. Amo
all configurations ofej there are cases where two unpe
turbed levelse1 ande2 are very close to each other. In suc
a case, Eq.~7! reduces to two terms

r 1

E2e1
1

r 2

E2e2
50, ~91!
4-11
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which has a simple solution

E5
e1r 21e2r 1

r 11r 2
. ~92!

As we assume that the differencee12e2 is very small, the
value ofE will also be very close to both unperturbed leve
e1 and e2. Equation~92! can be reversed, and having on
unperturbed level, saye1, and a new level,E, very close to it,
one can always find the position of another unperturb
level, e2, to fulfill Eq. ~7! in that approximation. We shal
call two very close unperturbed levels with a new level
side a dipole configuration. Now let us consider the proba
ity that two unperturbed levelse1 ande2 are at the distance
s with n21 unperturbed levels inside this interval. As unp
turbed levels are independent, this probability is given by
~90!.

We represent in Fig. 6 a possible configuration for tw
unperturbed levels~short thin vertical lines! separated by a
large distances5e12e2 with n21 levels between them. Fo
any such configuration, there exists a configuration with t
new energy levels atE2 and E1, very close toe2 and e1
respectively. This is true because, as we have pointed o
is possible to construct two unperturbed energy levelse28 and
e18 ~indicated by dashed lines in Fig. 6! such that two pairs
(e28 ,e2),(e18 ,e1) form the dipoles. For that configuration it i
clear thatE2 and E1 are two perturbed levels withn per-
turbed levels in between. Whens→`, it is physically clear
that the other levels will not influence these dipole config
rations, which explains Eq.~90!.

It is clear that this reasoning cannot be applied to
nearest-neighbor distribution~as it requires at least two un
perturbed levels inside the intervals) and the asymptotics o
P(s) given by Eq.~77! is quite different from Eq.~90!.

To check the asymptotic formula~90!, we compute nu-
merically thenth nearest-neighbor distributions untiln59
for a rectangular billiard with size 43p with periodic
boundary conditions and for different coupling constan
First, we find the best fit of the integratednth nearest-
neighbor distribution Nn(s)5*0

sPn(t)dt in the form
aexp(bs)sc. In Fig. 7, we plot values ofb andc obtained by
this fit. The lower curve~dots! shows the values of the con
stantb, which, as expected, is the same for all values on
and is equal with a good precision to21. The upper curve
~squares! shows the exponentc, which according to Eq.~89!
is expected to ben21. This is indeed the case for the high
values ofn. The small deviations from this expected val
for the lowestn come from the fact that the functionf has to
be taken into account since for larges, f (ln s2g6) behaves
like 1/lns. To illustrate the accuracy of Eq.~89! we present
in Fig. 8 the results of numerical computations forP2(s) and
P8(s) for a billiard with periodic boundary conditions an
renormalized coupling constant,l851. Error bars in this
figure indicate statistical errors. It is clear that the asympto
formula ~89! describes well the larges behavior ofPn(s).

The same checks have been performed for billiards w
Dirichlet boundary conditions. The results are presented
05621
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Fig. 9 and Fig. 10. Again the theoretical asymptotics~89! is
in a good agreement with numerical results.

V. CONCLUSION

The starting point of our investigation is Eq.~7!,

l(
j 51

N
r j

E2ej
51. ~93!

We assume that~i! all ej are independent random variable
~ii ! the residuesr j are real positive, and we compute thenth
nearest-neighbor distributionPn(s) of the solutions,E, in the
limit N→`. The exact formulas are quite cumbersome a
we dwell on the asymptotic behavior ofPn(s) at larges. Our
main results are the following.

The asymptotics of the nearest-neighbor distributio
P(s), is given by Eq.~77! and has the form

P~s!5
~^ervsp&!2

A2p^rervsp&vsp

e2s^ervsp&

As
. ~94!

FIG. 6. Schematic representation of the dominant contribut
to thenth nearest-neighbor distribution. Thin vertical lines are u
perturbed energy levels. Thick lines represent new energy lev
Two vertical dashed lines indicate two unperturbed energy lev
which are added to construct encircled dipole configurations.

FIG. 7. Values ofb ~dots! andc ~squares! in a fit of Nn(s) for
periodic boundary conditions under the forma exp(bs)sc.
4-12
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Herevsp is determined by the equation

2^rEi~rvsp!&5
1

ul8u
, ~95!

where Ei(x) is the usual exponential integral~63! andl8 is
the renormalized coupling constant~48!. The notation̂ f (r )&
indicates the mean value over all residues. For perio
boundary conditionŝ f (r )&5 f (1). For Dirichlet conditions
^ f (r )& depends on the ratios of the coordinates of the s
terer to the corresponding sides. When these ratios are
commensurable irrational numbers,^ f (r )& is defined in Eq.
~81!. When they are rational numbers,^ f (r )& should be com-
puted as in Eq.~82!.

The nth nearest-neighbor distribution withn>1 whens
→` has the following asymptotics:

FIG. 8. P2(s) ~the left curve! andP8(s) ~the right curve! for a
billiard with periodic boundary conditions.

FIG. 9. Values ofb ~dots! andc ~squares! in a fit of Nn(s) for
Dirichlet boundary conditions under the forma exp(bs)sc.
05621
ic

t-
n-

Pn~s!5
sn21

~n21!!
e2s, ~96!

which depends neither on the residues nor on the boun
conditions. For finite values ofs there are slowly decreasin
corrections to these formulas indicated in Eqs.~75! and~89!
which are important for accurate comparison with results
numerical calculations.

The above results together with the results of Ref.@13#
prove that spectral statistics of generic rectangular billia
with a small-size scattering center inside is of special~inter-
mediate! type characterized by two important properties:~i!
level repulsion at smalls and~ii ! exponential decrease of th
nearest-neighbor distribution at larges. To the best of our
knowledge, this is the first example of a dynamical syst
where the intermediate character of the spectral statistics
be proved rigorously.
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APPENDIX

The purpose of this Appendix is the computation of tw
main integrals,

J̃1~a1 ,a2!5S E
2`

0

1E
1

` D F12expS i
a1

12e
2 i

a2

e D Gde

~A1!

and

J̃0~a1 ,a2!5E
0

1F12expS i
a1

12e
2 i

a2

e D Gde. ~A2!

FIG. 10. P2(s) ~the left curve! andP8(s) ~the right curve! for a
billiard with Dirichlet boundary condition.
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As in @13#, we first find the difference of the derivatives ov
a1 anda2,

~]12]2!J̃1~a1 ,a2!

52 i S E
2`

0

1E
1

` D de

e~12e!
expS i

a1

12e
2 i

a2

e D ,

~A3!

where] i denotes the partial derivative with respect to thea i .
Changing the variablee5t/(11t), one gets

~]12]2!J̃1~a1 ,a2!5ei (a12a2)f1~a1 ,a2!, ~A4!

where

f1~a1 ,a2!5 i E
0

`dt

t
expS 2 ia1t1 i

a2

t D . ~A5!

The last integral is well defined for complexa when
Im(a1),0 and Im(a2).0. In this domain~see@23#!,

f1~a1 ,a2!52iK 0~2Aa1a2!, ~A6!

where K0(x) is the modified Bessel function of the thir
kind. At real a, the limiting function is discontinuous an
depends on the sign ofa,

f1~a1 ,a2!

55
2pH0

(1)~2A2a1a2! when a1,0, a2.0

2iK 0~2Aa1a2! when a1.0, a2.0

pH0
(2)~2A2a1a2! when a1.0, a2,0

2iK 0~2Aa1a2! when a1,0, a2,0.

~A7!

The functionJ̃0(a) obeys the similar equation

~]12]2!J̃0~a1 ,a2!5ei (a12a2)f0~a1 ,a2!, ~A8!

where

f0~a1 ,a2!52 i E
0

`dt

t
expS ia1t2 i

a2

t D
522iK 0~2Aa1a2!, ~A9!

which is defined in the region Im(a1).0 and Im(a2),0. At
real a, f0(a)5f1* (a) or explicitly

f0~a1 ,a2!

55
2pH0

(2)~2A2a1a2! when a1,0, a2.0

22iK 0~2Aa1a2! when a1.0, a2.0

pH0
(1)~2A2a1a2! when a1.0, a2,0

22iK 0~2Aa1a2! when a1,0, a2,0.

~A10!
05621
We note also the expression for the sum offs(a),

f1~a1 ,a2!1f0~a1 ,a2!

5p@sgn~a1!2sgn~a2!#J0~2A2a1a2!,

~A11!

where sgn(x) denotes the sign ofx.
The knowledge offs(a) permits us to write down a

linear partial derivative equation forJs(a),

~]12]2!J̃s~a1 ,a2!5Zs~a1 ,a2!, ~A12!

where

Zs~a1 ,a2!5ei (a12a2)fs~a1 ,a2!. ~A13!

The general solution of this equation has the form

J̃s~a1 ,a2!5 J̃s~0,a11a2!

1E
0

a1
Zs~ t,a11a22t !dt. ~A14!

The initial valuesJ̃s(0,a) can be computed directly from th
definitions ~A1! and ~A2!. By changing the variablee to t
521/e, one gets

J̃1~0,a!5S E
2`

0

1E
1

` D ~12e2 ia/e!de

5«
21

` dt

t2
~12eiat!, ~A15!

whereW is the principal value of the integral. Similarly

J̃0~0,a!5E
0

1

~12e2 ia/e!de5E
1

`dt

t2
~12e2 iat!.

~A16!

The final expressions forJ̃s(a) are the following:

J̃1~a1 ,a2!5«
21

` dt

t2
~12ei (a11a2)t!

1E
0

a1
ei (2t2a12a2)f1~ t,a11a22t !dt

~A17!

and

J̃0~a1 ,a2!5E
1

`dt

t2
~12e2 i (a11a2)t!

1E
0

a1
ei (2t2a12a2)f0~ t,a11a22t !dt.

~A18!
4-14
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According to Eqs.~A2! and ~A1!, the functionsJ̃0(a) and
J̃1(a) considered as functions of complexa1 and a2 are
analytical functions in different regions: Im(a1).0 and
Im(a2),0 for the former and Im(a1),0 and Im(a2).0
for the latter. They can be continued to complex planes w
the cuts represented in Figs. 1~a! and 1~b! for J̃1 and in Figs.
1~c! and 1~d! for J̃0. At real values ofa1 anda2 they have a
discontinuity along the axisa150 anda250.

The sumJ̃0(a)1 J̃1(a) obeys an equation similar to Eq
~A4!, where instead of functionf1(a) one substitutes the
sum ~A11!,

~]12]2!@ J̃1~a1 ,a2!1 J̃0~a1 ,a2!#

5ei (a12a2)Z~a1 ,a2!, ~A19!

where

Z~a1 ,a2!5p@sgn~a1!2sgn~a2!#J0~2A2a1a2!.
~A20!

The solution of these equations can be done exactly as a
and it can be represented as a sum of two discontinu
functions,

J̃0~a1 ,a2!1 J̃1~a1 ,a2!

5sgn~a1!R~a1 ,a2!1sgn~a2!R* ~a2 ,a1!,

~A21!

where

R~a1 ,a2!5pE
0

a1
J0@2A2t~a11a22t !#

3ei (2t2a12a2)dt. ~A22!

One can check that this expression coincides with Eq.~A24!
of @13#.

The following useful symmetry properties can be check
directly from the definitions~A1! and ~A2!:

J̃s~a2 ,a1!5 J̃s~2a1 ,2a2!5 J̃s* ~a1 ,a2!,

fs~a2 ,a1!5fs~2a1 ,2a2!52fs* ~a1 ,a2!,

R~2a1 ,2a2!52R* ~a1 ,a2!. ~A23!

For further references we present the behavior ofJ̃s(a)
andfs(a) at small reala,
s

es

05621
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J̃1~a1 ,a2!5
p

2
~ ua1u1ua2u!1 ia1~12g2 lnua1u!

2 ia2~12g2 lnua2u!, ~A24!

J̃0~a1 ,a2!5
p

2
~ ua1u1ua2u!2 ia1~12g2 lnua1u!

1 ia2~12g2 lnua2u!, ~A25!

and

f1~a1 ,a2!5
p

2
@sgn~a1!2sgn~a2!#

2 i ~2g1 lnua1u1 lnua2u!, ~A26!

f0~a1 ,a2!5
p

2
@sgn~a1!2sgn~a2!#

1 i ~2g1 lnua1u1 lnua2u!, ~A27!

whereg is the Euler constant.
Due to the above-mentioned analytical properties, th

expressions~though they have apparent discontinuities! can
be rewritten as the following analytical functions:

J̃1~a1 ,a2!5 ia1@12g2 ln~ ia1!#

2 ia2@12g2 ln~2 ia2!#, ~A28!

J̃0~a1 ,a2!52 ia1@12g2 ln~2 ia1!#

1 ia2@12g2 ln~ ia2!#, ~A29!

and

f1~a1 ,a2!52 i @2g1 ln~ ia1!1 ln~2 ia2!#, ~A30!

f0~a1 ,a2!5 i @2g1 ln~2 ia1!1 ln~ ia2!#, ~A31!

where we assume the usual definition of the logarithm
function with a cut along the real negative axis.

Similarly as was done in@13# for the sumJ̃1(a)1 J̃0(a)
one can also obtain higher-order terms of the expansion
J̃s(a) in power ofa. Both functionsJ̃1 andJ̃0 given by Eqs.
~A17! and~A18! contain terms proportional to ln(a11a2) but
one can check by direct series expansions that in the co
sponding sums these terms all cancel and the only loga
mic contributions to these functions are the ones presente
Eqs.~A24! and~A25!, as it should be to ensure the analytic
properties ofJ̃s(a).
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