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Nearest-neighbor distribution for singular billiards
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The exact computation of the nearest-neighbor spacing distrib&{eh is performed for a rectangular
billiard with a pointlike scatterer inside for periodic and Dirichlet boundary conditions, and it is demonstrated
that whens— < this function decreases exponentially. Together with the results of Bogomolny, Gerland, and
Schmit[Phys. Rev. B63, 036206(2001)], it proves that spectral statistics of such systems is of intermediate
type characterized by level repulsion at small distances and exponential fall-off of the nearest-neighbor distri-
bution at large distances. The calculation of thila nearest-neighbor spacing distributiéh(s) and its
asymptotics is performed as well for any boundary conditions.
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[. INTRODUCTION For standard random matrix ensembles, the nearest-
neighbor spacing distributions are given by complicated ex-
The statistical analysis of quantum energy levels for gpressiond2] but their main features can be seen from the
given system in the semiclassical limit is a well-studied fea-Wigner surmise,
ture in the theory of spectral statistick—3]. The main con-
jectures in this field are as follows. P(s)=ags’exp(—cgs?), (2
(i) The Berry-Tabor conjectuf@]: generic integrable sys- ,
tems obey Poisson statistics, which implies that their energy?nére8=1, 2, and 4 corresponds, respectively, to orthogo-
levels behave as independent random variables. nal, unitary, or symplectic ensembles, aag and c, are
(i) The Bohigas-Giannoni-Schmit conjecty#s: generic con_stants de_termmgd by the no_rmallzanon cond|t_|_ons. Its
chaotic systems follow the Wigner-Dyson distributions of Main properties aréi) level repulsion,P(0)=0, and(ii) a
random matrix theorysee[2]). very quick decrease at large values 9fP(s)xexp(—cs)
There is an enormous amount of numerical evidence thathens—. o _ _ _
many physical systems do agree with these two main level We calllspectrall statlstlcs_ of |ntermed|atg type if the_y _have
statistics. Partial analytical results support these conjecturdfe following hybrid propertiecf. [11,14): (i) they exhibit
for integrable rectangular billiard§] and quantum chaotic the level repulsionP(0)=0, as for standard random matrix
systemq7-10]. ensembles, andi) they have exponential decay at large
However, there exist systems which are neither integrabl& (S) = €xp(—cs) whens—, similarly to the Poisson statis-
nor chaotic and their spectral statistics do not follow any oftics. Little is known analytically for systems with intermedi-
the above leading models. In many cases their statistics ha@€ statistics, though it is possible to write down models
features intermediate between the Poisson statistics and tH&fich will have this type of statisticgl5,12. o
of random matrix ensembles and for this reason they are The rectangular billiard with a pointlike scatterer inside
called “intermediate statisticsf11-13. For the first time belongs to the class of diffractive systems and is one of the
this type of behavior was clearly observed numerically formodels which is supposed to have intermediate statistics
the three-dimensional Anderson model at the metal-isolatdrl4.13. Without the scatterer this model is an integrable sys-
transition poin{11], and later it was argudd4] that spectral tem, and when the ratia®/b® of the sides of the rectangle is
statistics of diffractive and pseudointegrable systems is als@ “good” irrational number its quantum energy levells,}
of intermediate type. obey the Poisson statistif4,6]. The addition of as-function
To study precisely the statistical behavior of the energyscatterer
levels of quantum systems, one usually introduces different ..
functions that characterize the statistigs The most impor- V=Nd(X—Xo) 3
tant quantity for our purpose is the distribution of nearest- .
neighbor spacingsP(s), which is the probability that two inside the rectangle corresponds to a rank-1 perturbation, and
levels are separated by a distasagith no levels inside this e néw quantum energy leveisof the perturbed rectangu-
interval. lar billiard will obey the following quantization condition
For the Poisson statistics, the nearest-neighbor distrib16:17:
tion takes the following particularly simple form: |¢(°)(>Z 2
\Y o =1 @
P(s)=exp—s) 1) " &

wherez//go) ande, are the eigenfunctions and eigenvalues of
and it is characterized b§i) the absence of level repulsion the unperturbed rectangular billiard. Similar equations ap-
[P(0)#0] and(ii) exponential decay for a large distance. pear in different models. In particular, the quantization con-
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dition for the star graphs can be transformed to this form Il. THE GENERAL FORMALISM
[18]. All our results are applicable without changes in such
cases as well.

Rank-1 perturbations have been studied in the context of In this section, our aim is to find analytical expressions
ballistic motion of particles in reguldd 7] or chaotic cavities ~for the nearest-neighbor spacing distribution of the solutions,
[19], and in the context of random matrix thedg0]. When  E, of the following equation:

A. Preliminary computations

a S-function potential(3) is added to a chaotic system with N
random matrix statistics, it has been proyad] that the new )\2 I -1 &
eigenvalues in Eq(4) are also distributed according to the S1E—¢ 7
same statistics. In the chaotic case, the universal part of the
spectral statistics is not changed by finite-rank perturbationynpere ej, i=1,... N are independent random variables
On the contrary, when the unperturbed system is integrabl&yith a uniform distributiond(e):
the perturbation(3) changes dramatically its spectral statis-
tics[17,13. 1
In Ref.[13], the two-point correlation function of a rect- —de if —WsesW
angular billiard with a small-size scatterer insidiescribed du(e)=4 2W ®
by the potential3)] has been computed analytically. One of 0 otherwise,

the conclusions of this paper was that spectral statistics of

such singular billiards do have level repulsion. For billiardsandr; are positive constants with mean value 1,

with periodic boundary conditions, the two-point correlation

function and, consequently, the nearest-neighbor distribution 1 N

vanish linearly at small distances with the slope independent N E rp=1. 9
of the coupling constant, n=1

_ This normalization condition permits us to introduce conve-
P(s) ~ m3g (5) niently the coupling constarx.
s—0 2 In general, this equation describes zeros of a meromor-
phic function whose poles are assumed to be independent

For billiards with Dirichlet boundary conditions, the small- random variables, and it can correspond to different physical
behavior of the two-point correlation function and the Problems(see, e.g[22]). In this paper, we prefer to consider

nearest-neighbor distribution is different: one Iisse[13]) it as the quantization condition of rectangular more gen-
eral integrablg billiards with a small-size impurity inside

[16,17. To ensure that energy levels of unperturbed billiards
~ 1 gints. 6) behave as independent random variables, it is necessary to
s—0 g3 assume that the ratio of squares of the sides of the rectangle,

a and b, is an irrational number badly approximated by a

The main purpose of this paper is to compute analytically tht%r?gopnrzlp(g;?;. 's, a diophantine numbef6] with the follow-

nearest-neighbor spacing distributions for this model and
demonstrate that for any boundary conditions they decrease
exponentially at large separation. Together with the results of
Ref. [13] regarding the existence of level repulsion, it will

furnish the proof that spectral statistics of these systems are

of intermediate type. for all integersm, n, and somek=2.
The plan of the paper is as follows. In Sec. Il, we gener- The residuesy,,, depend on boundary conditions. For

alize the formalism used ii13] to describe the nearest- yantum problems with periodic boundary conditions,
neighbor spacing distribution for a billiard with a pointlike —1 For Dirichlet conditions

scatterer for periodic and Dirichlet boundary conditions.

Though the resulting formulas are explicit and exact, they -

are quite cumbersome, and in Sec. Il we study the Mn=4 sinz(— mX,
asymptotic behavior oP(s) for larges. It is demonstrated a

that in all cases the nearest-neighbor distribution has an ex- ] ]
ponential tail at large distances thus proving the intermediat&herexo.yo are coordinates of the singular scatterer. When
character of the spectral statistics of singular billiards. Inthe ratiosxo/a andyy/b are noncommensurable irrational
Sec. IV, thenth nearest-neighbor spacing distributions for Numbers anan,n—,rp, can be considered as independent
these billiards with periodic and Dirichlet boundary condi- fandom variables,

tions are computed analytically and their large distance

P(s)

a2 m

C
b2 n _k

n

(10

: 11

|
smz(B nyo

asymptotics are found as well. In the Appendix, we present Fmn="4 SIN? ¢, Sir* ¢, (12)
certain technical details of the computation of necessary in-
tegrals. with angles¢; uniformly distributed between 0 and/2.
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When both ratioz/a andyq/b are rational numbers, 1 rw
J duo(e)p(e)= WVJ,WX(e)d)(e)de

Xo_P1 Yo_Pe

N (13
a b 1 (e
" e ~u | verde 19
with coprime integers; ,q;), the residue$11) only depend F2
onmmodq; andn modg, and there is only a finite number and
of residues determined hy angles¢; in Eq. (12) (see[13] 1 (w
for more detal. f dus(e)d(e)= 5 f [1-x(e)]d(e)de
2W ) _w
Ky
=7— with k;=0,1,...9,—1, 1 w E1
=7 L i = f —f s(e)de. (20
2W\ J-w Jg,
ko The summation in Eq(18) is performed over all sequences
$2= % with kz=0,1,... Ao~ 1. (14) o« Which contain one zero and—1 ones.
BecausdE;} are solutions of Eq.7), the density of states
All our formulas below remain valid for generg},. (17) can be rewritten under the forfaef. [13])
Obviously there aré\ solutionsE; of Eqg. (7) since each N N
interval ]e;,e; . 4[ contains one and only one of these solu- p(E)=o 2 o E M (21)
tions. We are interested in the nearest-neighbor distribution, c1E—¢ N1 (E_ek)z'

P(s), that is the probability that two energy levéis andE; ) ) o
are neighbors separated by a distasc® our case, it is the Representing thé function by a Fourier integral, one gets

probability that two solution&; andE; of Eq. (7) are sepa- = da N 1
rated by one and only one unperturbed legg| and that E)= —exdia 2 |
; Al p(E) 2 “ E-e X
|Ei—Ej|=s. Let us compute at first the probability —e T =1 ETE€
P(E.,E,) that two given energy levels; andE, are neigh- N
bors. Assuming for instance th&t,<E;, P(E;,E,) is the % Mk (22)
probability that that one solution of E¢7) equalsE, an- k=1 (E—ey)?
other one equal&,, and that there exists 1<i<N, such , .
that d 2 s and finally the probability(16) can be put under the form
*» dada N
eiE]Ez,El[, v J:'tla eJEE]EZ!El[ (15) P(El!EZ):f 41 > 2 {2} f Inl d,lL[rk(ek)eii(al#»az)/)\
S P B =
As it is supposed thag, are independent random variables N
with a uniform distribution, N, Mk,
w N de, kito=1 (E;—e ) *(Ex—ey,)’
PELE= | TT Sp(Ep(Ea) y | |
-Wk=1 2W rjl . rJ2
X H ex |a’1 +1 %] .
N j1,02=1 El_ejl Ez_ejz
X ) — }
2 x(e)ll [1-xe. a8 23

. - . . Let us introduce the following functions:
where x(e) is the characteristic function of the interval

1E,,E4[ equal to 1 ife belongs to E,,E,[, and to O other- Cap L ay
wise, andp is the density of the solutior; , folay,az)= | dus(e)exp i E,—e +i E,—e)’
N 1
p(E)=2, S(E—E)). 17 ‘I’jo(al,az)Zf dus(€) ———
i=1 (Ej_e)z
It is convenient to rewrite these formulas in a more symmet- wex | aj o )
ric way, E,—e E,—e/’
N
PELE)=3 [ T du,(e0p(Enp(Er), (18 ey, [ e
vE)= 2, | L dueledp(Ep(E, 9o, az) Mol )(El—e)Z(Ez—e)z
where variablesr,, k=1, ... N take two values, 0,1, and wexd | a 4 @y (24)
we introduce two different measures, E;—e E,—
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The nearest-neighbor distribution can be expressed through these functions in the following way:

*» daday

o 4

P(E;,Ep)= >,
{o}

Here and below when it will not lead to a confusion we use

the notationf(«) for a function of two variables (a4, a5)
and f(ar) instead off (aqr,a,r). This formula is valid for
all sequences ofr,. The functions(24) with index =0
correspond to an unperturbed level betwé&snandE,, and

the functions with indexr=1 correspond to an unperturbed
level outside E,,E,[. Therefore, to describe the nearest-
neighbor distribution, the summation should be done dVer

possible sequences containing only one zero.
The functions¥;, andg,, are related td , by the rela-
tions

2
—folar,@),9,(a1, ;)
@
54

I R
1V52

q’jo’(aI!QZ): -

(26)

Therefore, in order to compute(E4,E,) it is necessary to
find only f .. Let us introduce the functions

1 . ag
ex IEl—e

I (r( ay, aZ) = ZWI d/.L(,.(E)

1i 22 2
! E,—e/| @
which are related to our basic functiohg as follows:
1) 1
fi(ay,a2)=1~ W th(alﬂz),
w
folay, az)= 51— syplolar,az), (28

where w=E;—E, is the difference of energiegve recall
that we have assumde,<E,).
The integral definind ,(«) can be split into two parts,

= w
-w JE;
. )
l1—expi +i
e% El_e Ez_e)

=Jl(a1,a2)+j(a1,a2),

l1(ay,a;)=

X

de

(29

where

> g, (ar)]l f,(ar)+2 rinWi, (ar)®,, (ar) I f, (ar)|e i@t
R A5 Hd Ea e “ I

(25
|
E2 o0
Ji(ag,ay)= J +f
— El
1 p( M %2 Jlde (30
X|1-expig —g+ig =) |de (30
and
. -w *
J(alﬂz):_(f +f
—® w
1 i i %2 Jlge (31
x| 1—ex IEl—e |E2—e e. (31

For convenience, we define the functidg(a)=1¢(a) so
that from Eq.(27)

de.
(32

J —fEll 2
O(alaa2)_ E, exp 1 El_e I E2_e

The integral(31) definingj(«) has no singularity inside the
integration region, and as was demonstrated 18], it is
sufficient to take into account only terms lineardnand to
ignore the difference betwedn; and E, (i.e., setE;~E,
~E). In this approximation,

WiE" (33

j(ag,az)=i(a;+az)n
- -

(a)

(b)

(©) (d

FIG. 1. The cuts in complex planes af and a, for functions
Jy and ¢, (a),(b); Jo and ¢, (¢),(d).

056214-4



NEAREST-NEIGHBOR DISTRIBUTION FOR SINGULR . .. PHYSICAL REVIEW E 65 056214

On the contrary, the functionk,(«) are quite cumbersome. 5 »dt _
One can easily check that they depend only on the difference Jo(aq,ay)= f —2(1—e*'(“1+“2)t)
of energiesw=E;—E,, and that 1t

Jg(a>=w30(%). (34 + [ e gt eyt -t @)
0

where the functiongg(a) are defined by Eqg30) and(32)
with E;=1 andE,=

In the Appendix, |t is demonstrated that these functions
obey the differential equation

Exactly as was done i3], one can prove that functions
V., .0, defined in Egs(24) can be expressed through the
funcuons ¢, as follows:

(01— 32)d (g, a,) =€ (17D _(a;,a,), (39

9o(ay,az)= (01— dy)| e

ay az)

I[(a'l az)/w]¢ (_ _
o' o

2Ww
whereg; denotes the derivative with respectdg, and the

functions¢,(«) at reala are given by EqsiA7) and(A10). 1 ay ap
From this equation it followgsee the Appendix for detajls ‘Plg(al,az)—Tve'[(“l wlelg, ¢, (— —)

~ w w
that the functionl,(«) is an analytical function of two com-

plex variablesx , @, with the cuts as in Figs.(& and Xb) 1 " ol L @
given by the following expression: Yoo (ay,a)=— >we 17 @209, ¢, (? ;)
= dt . (38)

’jl(al,az):i t_z(l_el(a1+az)t)
-1
B. Nearest-neighbor spacing distribution
ag
+f e'(Z““l‘“2)¢l(t,al+ a,—1)dt, Using EQgs.(38), one can integrate the first term in Eq.
0 (25) by parts and becaugsee Eqs(28) and (34)]
a; az)

1 i(a1—ar)lw
(91— d)f (al,az)——me 1, %' o

(36)
where/ denotes the principal part of the integral.

The functiondy(a) is an analytical function in a region (39)
indicated in Figs. (c) and Xd) with the integral representa-
tion one obtains

* da;d
f_ &z ringj(ari)(k;t

—i(ay+an)/\
2 2 ka(ark))e 1raz

_ 1 fw dajda; D r-rk¢g_(gf-)¢>a (grk)ei[(al—az)/m](rk-%—rj)
w2 (2W)2) = 4x? F TN e ) T

x| 11 fUl(ar|)>e_i(“l+"‘2)”‘. (40)
1#],k

According to Eqs(38), the second term in Eq25) can also  wheref,, ()=, (aw). Using Eqs(28), (29), and(31), one
be expressed through the same functigng«a), and after ! !

the scaling of variablesr— aw [cf. Eq. (34)] the nearest- gets
neighbor distribution25) takes the form
~ w ~
fl(alaaz)zl_ﬂ 1+Ji(ag,ap)
*® da’ldaz
Pl=2> | ———= > rirdd,(ar)dy(ar _
{od J—=(4Wm)* [k +i(a+ay)in——
) W+E
— 01y, (ar ()¢, (ary)}e! (eI
x lﬂ.k?m(aro)eiw(“l*“zm, (42) Tolas,ay)= [1 Jo(ay,ar)]. (42)
B
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Expression(41) is valid for any sequencgo,} € {0,N. To C. Analytical continuation
get the nearest-neighbor distribution, one has to sum Hver
sequences containing only one zero. Taking into account that .
in the limit N—oo the restrictionj#k is unessential, we f da,da,f(a;,ay)e sXewa2) (50)
obtain, keeping only the dominant term, o

Usually, if one wants to compute an integral

N2 (= da;day ~ where J(«) and f(«) are analytical functions in a certain
Pl(w)=—— [N{fo(ar))V (a) region, the first step is to move the integration contour as far
2 2 b1.91 . . .
AW —= (27) as possible to decrease the integrand. In general, during that

deformation one can either meet a saddle point or a singu-
larity which signifies that further deformation of the contour
_ _ either will increase the integrand or is not possible. If no
x| 11 fl(ar,)>e""(“1+“2)“, (43)  such obstacle appears, the integral is zero.
! In the case of the nearest-neighbor distribut{dg), the
saddle-point equation readsking herer =1)

+V¢o‘¢l(a)+V¢ly¢o(a)]

where the operatov; 4(«) is defined for arbitrary functions

f and by the following expression: d ~ [ J ~ i
() ancigta) By 9e® Fadilan @)t = =0, - Tiag,az) = =0,
— i(ay—a)r i(ag—ag)r 1 2
Vf,g(a') (rf(ar)e ><rg(ar)e ) (51)
— < (ﬁif(ar) ei(al—az)f> In particular, these equations imply that at any saddle point,
ay
J Jd \~
———|J4(aq,a,)=0. (52
9 . ( &1, &2
><<(—g(ar) e'<a1—az>r>, (44) dJay da;
(90.’2

From Egs.(A4) and (A6) it follows that this difference is
and(f(r)) means the mean value over all values of proportional toKy(x) with x=2+/a;a,. But Ko(x) has no
zero on the complex plan@ee[23], p. 62. Therefore, our

integral (49) has no saddle points and one can move the
fr=3 N E f(r (45 contour of integration freely. If the prefactor {B0) has no

singularities in the region wherd is analytical, the contri-
Measuring the energy differenegin the units of mean level bution vanishes. Note that it is exactly what should be ex-

spacing pected for physical reasons: replacing the prefactor in Eq.
(49 by 1, we have to obtain the probability that there are
o= N_w (46) two perturbed levels i, andE, but no unperturbed energy
2W’ levels between, which according to E() is impossible.

These considerations prove that the inte@48) with a pref-
the productllf,(ar,) can also be simplified in the limit of actor equal to 1 or, more generally, with any prefactor ana-
largeN [see Eq(42)], lytical in the same domain a$,(«) (and not too quickly
N increasing on infinity must vanish.
H Tolar )%ex;{ N Thes_e arguments allow us to s_implify (_:on_side;rably the
LR 2W expression(49) for the nearest-neighbor distribution. The
prefactor in Eq.(49) is

47) f(a)=s[1~(To(ar))IVy, 4 ()

+V¢O’¢l(a)+V¢l’¢0(a). (53)

1"’31(“17(12)

+|(C¥l+ az)InW+ E

Introducing the renormalized coupling constarit

First, as only the functions with index 0 have analytical prop-
1 2w W-E

RV (48)  erties different from that od,(a) (see Fig. 1, one can drop
A NA - WHE the first term and keep only
we obtain the final formula for the nearest-neighbor distribu- fla)==s(Jo(ar))Vy, 4,(a)
tion P(s) =(2W/N)?P(w),
( ) ( ) (w) +V¢O’¢l(a)+V¢l’d,0(a). (54)
__[* daydasy ~ :
P(s)=e sf (2—)2{5[1—<J0(ar)>]v¢1,¢1(a) Secondly, according to EqéA11) and(A21),
e (27
— o[y an) +i(art agin’ do(a)=—¢1(a) + m[sgnay) —sgriaz)|Io(2V— ayay)
+V¢0'¢1( a)+V¢1,¢o( a)}e [(Jy(ar))+i(agt+ag)/N'T (55)
(49 and
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3 =_73 + R(a)+ R (a), When these expressions are substituted in (54), the
o(@) (@) sgria)R(a) +sgriaz)Ri(a) (56  termswith index 1 can be dropped out because they have the

_ _ _ _ same analytical properties ds(a) and, as has been dis-
where the functionR(«) is defined in EqQ.(A22) and cussed above, their integrals vanish. Finally, the prefactor
R'(a)=R*(ay,ay). takes the form

|
f(a)=—s[sgr(a;)(R(ar))+sgna;)(R'(ar))IVy, 4 (a)+am{sgrar) —sgnaz)][Vy, 4, (@) +Vy, 5 ()]

o(ay) o(ay)
astie a—le

+27i

(<e—ia2r>)2_2ﬂ_i (<eialr>)2, (57)

whereJ, is the Bessel functiod(2+— aqa5). The last term in this equation appears from the differentiatiopsgh(a;)
—sgn(a,)] in Eq. (44). The resultingd function allows us to take the remaining terms at smaal\We also writea ,+ i€,
wheree— 07, to recall the region where the functions are defined.

When this expression is substituted in E49) one gets the final formula for the nearest-neighbor distribution, which can
be conveniently written as a sum of three terms,

—S

e
P(s)=—[A(s)+B(s)+C(s)], (58)
4
where
A(s)= _Sf dalf da,2<R(ar)>V¢l‘¢l(a)e*8[<31(l’a)>+i(a1+az)/)\’]
0 —®
—sfo dazf_wdaﬁRT(ar))Vd)l,d,l(a)e*S[”l(’“))*‘(“l*"2)“']+c.c., (59)
B(S):WJO dalfiochZ[ngl"]O(a)+V‘]0'¢1(a)]eisu‘]l(ra))jLi(al+a2)/)\’]—WJO daZJ,xdal[V‘/’l'JO(a)
+Vy ()] sl tilarraNl o ¢ (60)
0%1
and
C(S)ZZWiJ'w daz (<e7ioczr>)2673[(31(O,raz))+iaz/)\']_27Tifoc dal (<eia1r>)Zefs[<31(ral,O))+ia1/)\'] (61)
,ooaz"f‘ié 7oca1—ie '

These expressions look quite complicated, but in the nexta17) and (A23) of the Appendix it follows thatl;(0,iv)
section we show that their asymptotics when« can eas- =J,(—iv,0)=1(v), where

ily be computed.

*d
I(U)If t—zt(l—e”t):e”—l—in(u), (62)

. ASYMPTOTIC BEHAVIOR -1

The formulas(58)—(61) have been written in such a way
that when the integration is performed frofre to + o, the
contour of integration as a whole can be shifted into the

T CoT = dt
complex plane. The direction of such a deformation is dif- Ei(v)= _f et (63)
ferent for the integration ovet; and that overa,. It can b
conveniently be fixed by the following change of variables:
a;=—iv or a;=iv. In the new variable the allowed defor- is the standard exponential integtake, e.9.[23], p. 143.
mation of the contour is in both cases &xe0. Consequently, after the above change of variables the in-

Let us consider first the simple integrd@l). From Egs. tegral(61) takes the form

and

v
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+iedy ) Let us consider the first term in E@59). We need to
C(s)= —27Tif A 7(<evr>)ze_sl<'(”)>_"”‘ ] know the limiting behavior of the integrand whes—0 and
o a,+ a=iv (we prefer to use this deformation instead of the
+iedy ) usual one,a,=iv, to simplify the formulas beloyv From
—27i J iOO7(<e’”>)2e*5[<'"””*”“ . (64  Egs.(A17), (A26), and(A30) it follows that for reala,

i o ~ a1=0
Now one can move the contour to the right until it goes Jy(agiv—ay) — l(v)+€’
through the saddle point. For the first integral, the position of

the saddle pointy ., , is defined by the equation

7T .
E—I(Zy-l—lnv—l

d 1 +In al)>a1, (70)
T (lwn)== 65 _ -

v A with 1 (v) defined by Eq(62). From Eq.(A22) in this limit
R(a)=ma,€”. The dominant contribution irt\/(l,l’(,)l(a)
comes from the second term in E¢44) and one gets
V¢l,¢l(a)z—i(e“)zl(alv). Combining all terms together
and changing the variable;— a/(s(re'’)) we find that at
larges

and for the second integral the saddle peintis determined
from a similar equation but with changed sign of the cou-
pling constani\’,

d 1
G In)=-=. (66)

% +ied )
A(s):27rif daJ _ —U(<efv>)2e—5[<l(vr)>—u/>\ ]
As |’ (v)=—Ei(v), the saddle points. are roots of the 0 S U

equation x e~ ™2sinfa[Ina—Ins+g(v)]}+ (A ——\"),
_ 1 (71)
(rEi(v.r)=5— (67)
A where
and it is possible to prove that for any redl there is one (re"Inr)
and only one solution of this equation. glv)=Inv+2y—1+2 —In{re™). (72

Expanding the exponent in E¢64) in the vicinity of the (ref
saddle points and taking into account thigv) = —e*/v and
(I(rvs))Fv /N =(e""=)—1, one gets that in the limis
—oo the function(61) is the sum of contributions from two

The integral over is an analog of Eq(64) and can be
computed exactly as above:

saddle points, (<erv ))2
o A(S )3/22
312 ((e™1)) e s((e")-1) =5 (retsu;
C(s)=(2m) E‘iﬁ . (69
== (re"hs, X f[Ins—g(v;)Je (-1, (73

The saddle point with the smallest value(ef’), which we
denote byvg,, dominates and it should formally be the only
one to be taken into account. For finité, it corresponds to

where the functiorf(y) is given by the integral

the solution of Eq(67) with a negative right-hand side, f(y)—f “mel2 g a(ln a—y)]dea. (74)
0
_ 1
(I’El(rvsp)>=——’. (69 One can check that the contributid0) when s—« is
IN'] smaller by a factor Fwith respect to Eq968) and(73) and

an be neglected.
Finally, we obtain that the nearest-neighbor distribution,
P(s), in the limit of larges has the following asymptotics:

Note the appearance of the absolute value of the renorma?
ized coupling constant. Whext — o, both saddle points ..
will give comparable contributions and both should be in-

cluded. (<ervsp>)2
The asymptotics of the other tern89) and (60) can be P(s)= e
computed by similar considerations. These functions are de- v2m(re™shug,

fined as double integrals. The first one is taken from &to
and the second from o to . To compute their asymptotic
behavior for larges, the latter integral should be deformed
into the complex plane as was done above and in the former
integral one has to take into account only the lowest-ordeThe saddle-point valueys,, depends on the renormalized
terms according to expansigA26). coupling constant by Eq69),

—s(e"Usp)

% {1-f[Ins—g(vey I} (75
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0.0 T T T T

£ g
Y s
FIG. 2. Plot of the functiorf(y) defined in Eq(74). FIG. 3. The nearest-neighbor distribution in the periodic case.
Squares and circles correspond, respectivelyhte=1 and A\’
1 =100. Solid lines: theoretical predictiorig8). For clarity, the up-
—(rEi(rvsp)>= - (76) per curves are shifted to the right by two units.

I\
In Fig. 3, we present a comparison between numerical
When\ is very large, the contribution of the second saddlecomputations and the theoretical predicti@®) for two val-
point with a reversed sign of the right-hand side of this equaues of\. The logarithm of the nearest-neighbor distribution
tion should be added. is plotted as a function of. The upper curvésquarescor-
In Fig. 2, the plot of the functiori(y) defined in Eq(74)  responds to 10levels with\’ =1 and the lower onéircles
is presented. Whely—o, this function goes to zero as to 5x10° levels withA’=100. For clarity, the curve corre-
—1ly. Therefore, the true asymptotics B{s) is given by  sponding tor’ =1 has been shifted on the right tsy—s

the first term in Eq(75), +2. The solid lines represent theoretical predicti6f8) for
. these values of the coupling constant. Por=100, two

B ((eVsp)? e S(€" saddle points with a different sign of the right-hand side of

P(s)= \/m s (77 Eg. (79 have been taken into account, which roughly

doubles the resulf78). These results confirm very well the

But because in Eq75) the argument of the functiof(y) up theoretical asymptotics of the nearest-neighbor distribution

to the constan(72) is Ins, this decrease is quite slow, and at (78).

numerically accessible values sf the order of 10(i.e.,y . I_nh':hebcas% of a redqtangular_ l:ailliaro_l (?_fksizmb with h
of the order of 3—#as is evident from Fig. 2 this function Dirichlet boundary conditions, with a pointlike scatterer suc

gives a noticeable contribution. that the ratios of its positionsx§,y) to the corresponding

For the billiard with periodic boundary conditions, the sides are noncommensurable irrational numbers, the resi-
residues in Eq(7) all equal 1, and all mean values ar’e re- dues;r,, can be considered as random variables of the form
duced to the corresponding function, i.e., for any funcion 9iven by Eq.(12) and the mean value of a given function
the quantity((rx)) becomes (x). f,(f(r)), should be computed as follows:

In this case, the nearest-neighbor distribution has the fol-

H L. 4 (w2 2
|OW|ng asymptotlcs. <f(l’)>= _zf d¢lf d¢2 f(4 Slr? ¢l sm2 ¢)2)
m*Jo 0
eSUsp efsé’sp (81)
P(S)= mT[l—f(ln S— g(vsp))] (78)
sp VS In the case wherg,/a andy,/b are rational numbergl3),

the mean valuéf(r)) takes the formsee[13
The value ofvg, is determined by the equation valugf(r)) msee13)

ar—1ap-1
1 <f(r)>=L > > f 4sinz7T—klsin27T—k2 . (82
Ei(vsp=— m (79 0102 K1=0 k=0 d1 4z
The casek;=0 andk,=0 correspond to unperturbed sub-
and sequence of levelgfor Dirichlet boundary conditionsand
one has the freedom to include them in the level den&ify
gvsp=INvg—vgpt2y—1. (80 or consider them separately. In the latter case, the terms with
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Dirichlet boundary conditions and the expected asymptotic
behavior(75) (solid line) for two values of the renormalized
coupling constantA’=1 and\’'=10 (xg/a,yo/b are in-
commensurable irrational numbgr$o better understand the
asymptotics of the nearest-neighbor distribution, we present
in Fig. 5 the functions which determine the exponential de-
crease ofP(s). Different curves in this figure correspond to
the following functions:— Ei(x) (thick solid line, expx (thin
solid line), —(rEi(rx)) (thick dashed ling and(expx) (thin
dashed ling

For periodic boundary conditions, the intersection of the
horizontal line having the ordinate Xt/ with the graph of
—Ei(x) gives the value obg,. The point of intersection of
the vertical line going through, with the graph ofe* de-
termines the exponent in E@78). For Dirichlet boundary
conditions, one should use the same procedure but with the
s functions—(rEi(rx)) and(e"™).

In[P(s)]

FIG. 4. The nearest-neighbor distribution for a billiard with Di-

rjchlet boundary conditions. Squgres and circles f:orrespond, respec- V. THE nTH NEAREST-NEIGHBOR SPACING
tively, to A'=1 and\'=10. Solid lines: theoretical asymptotics DISTRIBUTION

(78). Upper curves are shifted to the right by two units.

In the previous sections we compute the nearest-neighbor
ki=0 should be omitted and 1{{q,) in front of the sum distribution,P(s), for a rectangular billiard with a small-size
should be substituted by[14,—1)(q,—1)]. The generali- scattering center inside, i.e., the probability that two levels
zations of{f(r)) for the case in which only one ratig/a or ~ are separated by a distansevith no levels in between. In
yo/b is an irrational number and the other one is a rationathis section, we generalize the formalism to computertifie
number, or both ratios are irrational but commensurabléearest-neighbor distributioR,(s), which is defined as the

numbers, are straightforward. probability that two levels at distanceare separated by
With such a definition of the mean value, the asymptoticdevels, forn=1. _ o .
of the nearest-neighbor distribution is given by EZf). Our starting point is the expressi¢fl) which is valid for

As in the periodic case, the quantityln P(s) is expected any sequencer, of 0 and 1. To obtain thenth nearest-
to be nearly linear with the slopge’s), wherev, is the ~ neighbor distribution, one should sum over all sequences of
solution of Eq.(76). lengthN with exactlyn+ 1 zeros. Performing the same steps
Figure 4 shows a comparison between the numericallys in Sec. Il B and taking into account that when-o we
computed nearest-neighbor distribution for a billiard with haveCy—N"/n!, one obtains

s da,da; s & n+1 s" & n
Pa(s)=e fﬁm (2m? | (n+ 1)l [1=(Jo(ar)]"" Vg, 4 (a)+ m[l_<~]o(ar)>] [Vgg.6,(a)+Vy g4 ()]
-1
+L[1—<ﬁ (ar)]" Wy 4 (@) | sOua) +ilayt e '] 83
(n_l)! 0 bq. %0 ,
|
with all functions defined as above. the same analytical properties as the funciigfr) in the

As a consistency check, one can verify that the sum ovegyponent. Exactly as was done in Sec. Il C, one can argue
all n coincides with the exact expression of the two-pointinat their contribution is zero because one can freely move
correlation function derived ifil3], the integration contour to infinity. The second group consists
of terms which are singular on one variable but have “good”
analytical properties on the other variable of integration. The
larges asymptotics of such terms can be calculated as in Sec.
Il by computing the leading terms over the former variable

Similarly to Sec. Il C, the different terms in EB3) can  and shifting the contour of integration over the latter variable
be classified according to their analytical properties. Threénto the complex plane until it reaches the saddle point. The
groups of terms appear. The first group has terms which havasymptotics of these terms will be proportional to exp

Rz(s>=go Pn(s). (84)
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X

FIG. 5. Functions— Ei(x) (thick solid ling, —(rEi(rx)) (thick
dashed ling €* (thin solid line, and{e™) (thin dashed ling

[—sé'sp] as for the nearest-neighbor distribution. Finally, the
third group[which does not exist foP(s)] includes terms

PHYSICAL REVIEW E 65 056214

>0, it is the last group of terms which will dominate the
asymptotics ofP,(s) whens—x,

From formula(A26) of the Appendix it follows that, when
both variablesy; anda, are small, the function‘s;'(,)i b, will

be equivalent to their singular parts,

27i
V‘/’1v9’51(a)2_ Vﬂbl,qbo(a):_a_lé(az)r

ajay

Voo gl @) =(2m)78(ay) S ay).
(89

2i
V¢l,¢0(a)=a—25(a1),

The singular terms if1—(Jo(ra))]" are given by the
small-«w behavior in Eq(A25). Keeping only the terms with
a singularity in{1+ (J3;(r @)) —[(Jo(r @)) + J1(ra)) 11", we
get

1-nm(|ayg|+]ayl)

[1-(Jo(ra))]"=

+n(n—1) 72| ;|| ay|. (86)

(We recall that the terms coming frofh vanish) The first
term in this expression is the dominant regular contribution,

which are singulafi.e., have analytical properties different o second one is the dominant contribution singular in one
from that of J;(a)] for both variables of integration. In this variable, and the third term is the dominant contribution sin-
case, no deformation of the integration contour is possiblegular in both variables.

the region of smalle; and a, will be important, and the Combining all the above expressions together and using
asymptotic result will be proportional to exp§). As vy,  Eq.(A24), we obtain

Snfl

(n——l)le [ 72s?sgr a;)sgn a,) + 272is sgn( ay) 8(ay) — 272is sgr( ap) 8( ay)

Pn(s)=

7SJ'OO dalda’z
—= (2m)?

+(2m)28(ay) 8 ay)] exp—s(g(|a1|+|a2|)—ial(|n|a1|+g_)+iaz(ln|a2|+g+) , (87)

where As above, whers—c the functionf(lns—g-) goes to
zero and the true asymptotics of tih nearest-neighbor

distribution withn=1 for all boundary conditions is

1
gi=(rlnr>+y—1i;. (88)

Sn—l

n—1)1°¢

—S
3

Pa(s)= (90)
After simple calculations, we obtain the largeasymptotics
of the nth nearest-neighbor distribution e., it coincides with ther{— 1)th nearest-neighbor distribu-
tion for the Poisson distribution. A simple physical explana-
tion of this result is the following.

We are interested in the solutions of E@) when unper-
turbed levelsg;, are independent random variables. Among
all configurations ofe; there are cases where two unper-
where the functiorf(y) is defined by Eq(74) (see also Fig. turbed levelse; ande, are very close to each other. In such
2). a case, Eq(7) reduces to two terms

The only difference between periodic and Dirichlet
boundary conditions is in the constagt (88) where the

term(r Inr)=2(1-In 2) is added for the latter.

n—1

Pn(s)= =11

e [1-f(Ins—g)][1—-f(Ins—g_)],
(89

)
E—e,

s
E—e

(91)
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which has a simple solution s

er,t+er;
gt

92

As we assume that the differeneg—e, is very small, the
value ofE will also be very close to both unperturbed levels,
e; ande,. Equation(92) can be reversed, and havmg_one FIG. 6. Schematic representation of the dominant contribution
unperturbed level, sag, and a new leveE, very close o it, (5 thenth nearest-neighbor distribution. Thin vertical lines are un-
one can a|Way_5 find the_ position of a}nOther unperturbetherturbed energy levels. Thick lines represent new energy levels.
level, e,, to fulfill Eq. (7) in that approximation. We shall  Two vertical dashed lines indicate two unperturbed energy levels
call two very close unperturbed levels with a new level in-which are added to construct encircled dipole configurations.
side a dipole configuration. Now let us consider the probabil-
ity that two unperturbed levels; ande, are at the distance Fig. 9 and Fig. 10. Again the theoretical asymptotig$) is
swith n—1 unperturbed levels inside this interval. As unper-in a good agreement with numerical results.
turbed levels are independent, this probability is given by Eq.
(90).

We represent in Fig. 6 a possible configuration for two

unperturbed levelgéshort thin vertical linesseparated by a The starting point of our investigation is E(Y),
large distance=e; — e, with n—1 levels between them. For

B

V. CONCLUSION

any such configuration, there exists a configuration with two N
new energy levels aE, and E;, very close toe, and e; D ——=1. (93)
respectively. This is true because, as we have pointed out, it =1E—g

is possible to construct two unperturbed energy leegland . _ _
e (indicated by dashed lines in Fig) 6uch that two pairs V& assume that) all e; are m_d_ependent random variables,
(e}.€,), (€], e,) form the dipoles. For that configuration it is (i) the residues; are real positive, and we compute tii
clear thatE, and E; are two perturbed levels with per- r)egrest-nelghbor distributid®, (s) of the §olutlonsE, in the
turbed levels in between. When-<, it is physically clear limit N—o. The exact formulas are quite cumbersome and
that the other levels will not influence these dipole configu-e dwell on the asymptotic behavior B (s) at larges. Our
rations, which explains Eq90). main results are t_he following. _ S

It is clear that this reasoning cannot be applied to the "€ asymptotics of the nearest-neighbor distribution,
nearest-neighbor distributiofas it requires at least two un- F(S). is given by Eq(77) and has the form
perturbed levels inside the inteng)l and the asymptotics of

P(s) given by Eq.(77) is quite different from Eq(90). A i
To check the asymptotic formulé®0), we compute nu- P(s)= \/m s (94)

merically thenth nearest-neighbor distributions unti=9
for a rectangular billiard with size X7 with periodic
boundary conditions and for different coupling constants.
First, we find the best fit of the integratatth nearest-
neighbor distribution N(s)=[3P,(t)dt in the form
aexpb9s’. In Fig. 7, we plot values ob andc obtained by
this fit. The lower curvedots shows the values of the con-
stantb, which, as expected, is the same for all valuesof
and is equal with a good precision tol. The upper curve
(squaresshows the exponem which according to Eq89)
is expected to be— 1. This is indeed the case for the higher
values ofn. The small deviations from this expected value
for the lowestnh come from the fact that the functidrhas to
be taken into account since for largef(Ins—g-) behaves
like 1/Ins. To illustrate the accuracy of E§89) we present
in Fig. 8 the results of numerical computations Ry(s) and
Pg(s) for a billiard with periodic boundary conditions and
renormalized coupling constank,’=1. Error bars in this _, s .
figure indicate statistical errors. It is clear that the asymptotic ° 2 4 6 8
formula (89) describes well the large behavior ofP,(s). n

The same checks have been performed for billiards with FIG. 7. Values ofb (dots andc (squaresin a fit of N(s) for
Dirichlet boundary conditions. The results are presented imperiodic boundary conditions under the fommexp{9s”.
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In[P(s)]

FIG. 8. P,(s) (the left curve and Pg(s) (the right curve for a
billiard with periodic boundary conditions.

Herevg, is determined by the equation

o)y =
—(rEi(rogy))= NG (95)

where Ei(x) is the usual exponential integ(@B) and\’ is
the renormalized coupling consta@d8). The notationf(r))

PHYSICAL REVIEW E 65 056214

InP(s)]

s

FIG. 10. P,(s) (the left curvg andPg(s) (the right curve for a
billiard with Dirichlet boundary condition.

Sn—l

Pn(S)=—(n_1)! e

5 (96)

which depends neither on the residues nor on the boundary
conditions. For finite values afthere are slowly decreasing
corrections to these formulas indicated in EG&%) and (89)
which are important for accurate comparison with results of

indicates the mean value over all residues. For periodiquumerical calculations.

boundary conditiongf(r))=1f(1). For Dirichlet conditions

The above results together with the results of R&8|

(f(r)) depends on the ratios of the coordinates of the scatprove that spectral statistics of generic rectangular billiards
terer to the corresponding sides. When these ratios are nowith a small-size scattering center inside is of spe@iaer-

commensurable irrational numbex$(r)) is defined in Eq.
(81). When they are rational numbef$(r)) should be com-
puted as in Eq(82).

The nth nearest-neighbor distribution with=1 whens
—o has the following asymptotics:

FIG. 9. Values ofb (dotg andc (squaresin a fit of N,(s) for
Dirichlet boundary conditions under the forarexpp9)s’.

mediate type characterized by two important propertiés:
level repulsion at smal and(ii) exponential decrease of the
nearest-neighbor distribution at large To the best of our
knowledge, this is the first example of a dynamical system
where the intermediate character of the spectral statistics can
be proved rigorously.
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APPENDIX

The purpose of this Appendix is the computation of two
main integrals,

= [ [7)1-end iz -2
1(al,a2)— _x+ L —eXx Il_e—lg e
(A1)
and
3 —Jll i1 %2 lge (A2
Jo(aq,ay)= . —ex Il—e_l? e (A2
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As in[13], we first find the difference of the derivatives over We note also the expression for the sum¢gf(a),
aq and Ay,
b1, az)+ dolaq,ay)

=m{sgna;) —sgna;) [Jo(2V— aiay),
(A11)

(91— 32)31( ey, )
- fo n fw de Lo
TN T Jerme M 'ime T e
where sgnX) denotes the sign of.
(A3) The knowledge of¢,(a) permits us to write down a

whered; denotes the partial derivative with respect toghe ~ IN€ar partial derivative equation fd¥,(«),

Changing the variable=t/(1+1t), one gets ~
ane (141, one g (01— 33 @, @) =Zo(ay,a0),  (A12)

(01— 02)d1(ay,a) =€ 1" D (ag,a;),  (Ad) where

h )
where Zy(ar.ap) =D (ay,a5).  (ALD)

. (A5) The general solution of this equation has the form

i ~dt i %)
¢1(a1,a2)=IJ Tex _|C¥1t+|T
0

The last integral is well defined for complex when Jolag,a2)=15(021 + a7)

Im(@;1)<0 and Im(,)>0. In this domain(see[23)),

D1y, ap)=2iKo(2Va ay), (A6)

where Ko(x) is the modified Bessel function of the third The initial values],(0,) can be computed directly from the
kind. At real «, the limiting function is discontinuous and definitions (A1) and (A2). By changing the variable to t

+f 'Z(taj+ay—t)dt.  (A14)
0

depends on the sign af, =—1/e, one gets
~ 0 * .
¢l(alla2) J1(01a)=(f +J (l_efla/E)de
—aHM(2V-aja,) when «;<0, a,>0 e
. 2iKO(2\/ala'2) When a1>0, 012>0 :foc ﬂ(l—eiat) (A15)
TH@ (2= ara,) when a;>0, a,<0 at? '
2iKo(2Vayaz) when a;<0, @;<0.  \heref is the principal value of the integral. Similarly
(A7)
.~ .. . j 0 _ ! 1— —iale de= wg 1— —iat

The functionJy(«) obeys the similar equation o(0.a)= 0( € )de= 1 tz( e .

- ) Al6
(91— 32)do(ay,a) =€ 1" Dgo(ay,a,),  (A8) (AL6)

The final expressions faf,(a) are the following:

where

ot ~ > dt ot a

ol ar,az)= —if —exp(ialt—i 2) Jl(“l'“z):f 5 (1—ellearazty
ot t _qt
= _2|KO(2 Valaz)v (Ag) 4 falei(%“l*“?)(ﬁl(t,al-i-az—t)dt
which is defined in the region Ima;) >0 and Im(w,) <0. At °
real a, ¢o(a)= ¢} (a) or explicitly (A17)
dolay,ay) and

—7H@(2\V-aja,) when «;<0, a,>0
—2iKo(2\aja,) When a;>0, a;>0
aHP(2V-a1a,) when a;>0, a,<0
—2iKo(2yaya,) when a;<0, a,<0.

(A10) (A18)

~ >dt .
JO(“l!QZ):J _2(1_e—l(a1+a2)t)
1t

@y .
+JO e (a1 ) g (t @y + ap—t)dt.
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According to Egs(A2) and (A1), the functionsiy(a) and
J1(a) considered as functions of complex, and a, are
analytical functions in different regions: Im)>0 and
Im(a,)<0 for the former and Im¢;)<O and Im(,)>0
for the latter. They can be continued to complex planes with
the cuts represented in Figgaland Xb) forjl and in Figs.

1(c) and Xd) for J,. At real values ofx; anda, they have a
discontinuity along the axig;=0 anda,=0.

The sumJy(«)+3J;(e) obeys an equation similar to Eq. nd
(A4), where instead of functiom,(«) one substitutes the

~ T i

Ji(ay,az)= §(|a1|+|a2|)+|a1(1— y—In|ay|)
_ia’z(l_ y—|n|a2|), (A24)

- T _

Jo(ay,ap)= §(|a1|+|012|)_|a1(1_ y—In|ay|)

+ia2(1—y—|n|a2|), (A25)

sum(Al1l1), T
5 _ d)l(al,a2)=§[sgr(a1)—sgr(a2)]
(91— 3d2)[J1(a@1,ap) + oy, @))] .
O aZ( ), (AL9) —i(2y+In|ay|+In|ay|), (A26)
where dol a1, az) = S sgay) — sgray)]

Z(alaaz):W[ng'(al)_SQr(az)]Jo(zV_alaz)iAzo) +i(2y+In|ay|+In|ay)), (A27)

The solution of these equations can be done exactly as aboWd1€r€ ¥ is the Euler constant. . .
and it can be represented as a sum of two discontinuous Due to the above-mentioned analytlcql properties, these
functions expressiongthough they have apparent discontinuitiean

be rewritten as the following analytical functions:

Jolar,a) + 3, @z) Jyag,ap)=ia[1-y—Iniay)]

:Sgr(al)R(al1a2)+Sgr(a2)R*(a21al)v —iaz[l—y—ln(—iaz)], (A28)

(A21) _
Where Jolag,az)=—liay[1-y=In(—ia;)]
+iay[1—y—In(iasy)], (A29)
R(al,az):ﬂ'fo Jo[2V—t(a;+ay—t)] and
Xei(Z’[*al*az)dt. (A22) ¢1(a1,a2)=—i[2’y+|n(ia1)+|n(—ia2)], (A30)

One can check that this expression coincides with(Bg4) dolay,ax)=i[2y+In(—iay)+In(iay)], (A31)

of [13]. _ _ where we assume the usual definition of the logarithmic
The following useful symmetry properties can be checkednction with a cut along the real negative axis.

directly from the definitiongAl) and (A2):
Jolaz, 1) =3,(—ar,—ap) =35 (a1, ),

¢o’(a21al):¢a(_al1_a2): _¢§_(C¥1,a’2),

R(—a1,—ap)=—-R*(a,a). (A23)

For further references we present the behavioﬁ(;(fa)

and ¢, («) at small reala,

Similarly as was done ifil3] for the sumd; () +3Jo()
one can also obtain higher-order terms of the expansions of

J, () in power ofa. Both functions]; andJ, given by Egs.
(A17) and(A18) contain terms proportional to la{+ ) but

one can check by direct series expansions that in the corre-
sponding sums these terms all cancel and the only logarith-
mic contributions to these functions are the ones presented in
Eqgs.(A24) and(A25), as it should be to ensure the analytical

properties ofl,(a).
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